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Introduction 

This narrative case study report is a synthesis of key discussions and preliminary scientific 

results for the Sacramento/San Joaquin region, undertaken as part of the Hyperion project 

(2016-19). Project Hyperion (now continuing as the HyperFACETS project) is a basic science 

project that aims to advance climate modelling by evaluating regional climate datasets for 

decision-relevant metrics. While there has been an explosive growth in the number of regional 

climate datasets available to users, there is limited understanding of the credibility and suitability 

of these datasets for use in different management decisions. Hyperion aims to address this 

need by developing comprehensive assessment capabilities to evaluate the credibility of 

regional climate datasets, understand the processes that contribute to model biases, and 

improve the ability of models to predict management relevant outcomes.  

Since decision-relevance is a core motivation for the project, Hyperion is designed on the 

principles of co-production. The project brings together scientists from nine research institutions 

and managers from twelve water agencies in four watersheds: Sacramento/San Joaquin, 

Colorado Headwaters, South Florida, and Susquehanna. The project structure explicitly allows 

for both the groups to co-develop the science plan and research questions, in addition to co-

producing the science itself. The scientists include atmospheric and earth system scientists as 

well as hydrologists. The water managers, depending on the agency, have functions including 

planning, operating and managing water quality, water supply, stormwater management, flood 

control, and water infrastructure design.       

This narrative report provides an overview of the co-production process in Hyperion (Chapter 1), 

the regional hydro-climatic context and challenges (Chapter 2), broad climate information needs 

of water management agencies (Chapter 3), and short summaries of the key scientific activities 

undertaken for the region (Chapter 4). This information is based on the project’s co-production 

engagements and preliminary scientific results. Some of the preliminary results may be updated 

or refined as they go through the peer-review process. While this report is based on the 

perspectives of water management agencies that were part of Hyperion, we hope that the 

insights and methodologies that were developed are broadly applicable to other agencies in the 

region as well. 
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1.  Co-production in Hyperion 

In Hyperion, as far as possible, the research questions, approaches and results were co-

produced through regular structured and unstructured engagements between scientists and 

managers (Figure 1). Structured engagement methods included workshops, remote and in-

person focus-group discussions, and quarterly project update calls. There were also continual 

less-structured, informal conversations over telephone calls and emails.  

 

 

 

 

 

 

 

 

 

Figure 1: Co-production process and timeline  
Summarizes key engagement activities along with important outcomes at each stage (depicted by the blue document 

icon). ‘Sci’ refers to Scientists, ‘WM’ refers to Water Manager and ‘HC ph.’ refers to Hydroclimatic Phenomena. 
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2. Regional hydro-climatic context & challenges 

The Sacramento and San Joaquin river basins are located in the Central Valley of California. 

Twelve rivers feed into the basin that supports one of the largest economies in the world. The 

basin serves drinking water and other municipal needs for over 25 million people across 

California. The Central Valley Project and the State Water Project are the main water 

management projects in the region. They provide irrigation water for over 2 million acres of 

agricultural land and consist of large and small dams and hydropower plants. The basin also 

sustains several aquatic as well as terrestrial habitats in the mountains, foothills, delta as well as 

by the ocean.  

The Sierra snowpack serves as an important water storage reservoir for the state. Changes in 

precipitation that reduce snowpack or alter timing of snowmelt and water flow, are critical 

challenges for the region. Severe drought conditions resulting from reduced precipitation in the 

past few years has led to shortages in water supply.  At the same time, changes in precipitation 

patterns (especially fraction of rain versus snow), can lead to shifts in timing of runoff, making 

the region prone to flood risks. Increased temperatures (and subsequent increase in 

Evapotranspiration or ET) can impact the magnitude and seasonality of water demand. Warmer 

water temperatures also impact habitat conditions for endangered fish species. Sea level rise 

leading to seawater intrusion into the delta is also a challenge.  

Information on projections of climate are incorporated in future water supply planning, as well 

as, in some infrastructure plans of the region. These are mostly based on studies from the 

Bureau of Land Reclamation, the Department of Water Resources (DWR) and individual water 

agencies. More specifically, hydroclimate data is used in reservoir carryover storage planning, 

electricity demand forecasting, capital improvement planning as well as in plans for shoreline 

investment and development. In addition, climate data is also used in water flow management 

for protection of endangered fish species, as well as in developing new water rate structures.  

The quality of precipitation projections is a key information gap for the region, which is related to 

the high interannual variability in precipitation. Better representations of precipitation, such as 

snow versus rain hydrographs, are also required. Reliable projections of changes in timing, 

intensity and magnitude of extreme events, such as changes in probabilities of mega-droughts, 

are not available. There is a need for better characterization of uncertainty in future projections 

(such as sea level rise), including how to better understand, evaluate and incorporate 

uncertainty into the planning process. In addition, further research is needed to revise ET rates 

and the length of the irrigation season, based on climate change projections. A better 

understanding of temperature impacts alone, would also be useful. The overall sentiment for 

information gaps in this region is that, though there is plenty of information available, there is not 

enough evaluation or synthesis of the available data to critically understand its applicability and 

utility for specific planning decisions.  A ‘planners’ guide’ to assist managers on how to use the 

available data and information, could be a valuable resource. 



6 

3. Climate information needs for water management 

3.1. Overview 

Most regions in the state rely on snowpack for water supply and hence snowpack is a key 

metric of interest. Rainfall and storm metrics tend to be more important for regions with a risk of 

urban flooding. For water supply, one of the key management goals for several state agencies 

is to have a full reservoir on July 1. The state also characterizes longer-term dry periods using 

streamflow metrics, which form the basis for “water year type” classifications and is of great 

interest to managers. CA DWR has specific categories for different water year types: wet, above 

normal, below normal, dry or critical. Dry spells and high temperature metrics on the shorter 

weekly or monthly time scales may be useful for water supply planning and allocation of 

maximum daily usage for a water system. 

Most longer-term planning using climate change projections is done for mid-century to 2070-

time scales, going up to the end of century. Seasonal to interannual scale representations of 

climate change projections would suffice for most long-term planning decisions, although daily 

or weekly time scales may still be useful for some infrastructure operational purposes. Spatial 

scale requirements tend to vary based on the type of facility or water system that is being 

managed. Overall, while basin scale average numbers may be useful, it may often make more 

sense not to average over the whole basin but look at certain key spatial points such as those 

upstream of important infrastructure. Some regions may use different meteorological stations as 

proxies for key spatial scale markers, and these could also provide useful information on spatial 

scales to managers. 

With regard to types of simulations, currently most planning in the region is done based on 

normal long-term 50-100-year projections. Simulation of worst-case scenarios or extreme 

events could potentially be interesting and valuable – but the utility and skill of such simulations 

would need to be demonstrated. 

3.2. List of decision-relevant metrics and their importance 

In order for science to be actionable, resource managers need information on decision-relevant 

climatic metrics. Therefore, one of the first goals of Hyperion was to co-produce the decision-

relevant metrics for different management decisions in each of the case study regions. From the 

water managers’ perspective, such metrics quantitatively describe climatic phenomena that are 

directly related to practical management problems; changes in these quantities would 

necessitate shifts in water infrastructure planning and operations. From the scientists’ 

perspective, these metrics can be used to test model fidelity for decision-relevant phenomena 

and hence push model development and scientific inquiry in more use-inspired directions. Table 

1 represents the decision relevant metrics, along with their potential importance, that were 

developed through iterative engagements between Dec 2016 to Nov 2017. This table is referred 
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from the published journal article titled “The making of a metric: Co-producing decision-relevant 

climate science” by Jagannathan, Jones and Ray.1 

Table 1: Examples of decision-relevant metrics for each region. 
The table highlights management issues, hydroclimatic phenomena, aspect of phenomena and then each decision-

relevant metric. The last column also describes some of the potential decisions or uses for these metrics that were 

identified by the case study water managers. 

Issue Hydroclimatic 
Phenomenon 

Aspect of 
Phenomenon 

Decision-relevant 
Metric 

Decision/Use 

Water 
Supply 

Snowpack Annual cycle of 
snow 

accumulation 
and melt 

Snow Water 
Equivalent (SWE) 

triangle - Peak snow 
(amount and timing), 
and its relationship 
with average snow- 
accumulation and -

melt rates, and timing 
and length of 

accumulation and melt 
seasons  

On-stream reservoir 
management and 

understanding future streamflow 
characteristics - Shape of the 
triangle shows the changing 

dynamics of the snow season, 
and what to expect in terms of 

runoff timing and amounts.   

Floods Snowmelt Peak Snowmelt 
{Pulse events} 

Highest melt rate and 
its timing and rate of 

occurrence 

Reservoir operations and flood 
management. 

Water 
Supply 

Snowpack Inter-annual 
Variability in 
Snowpack 

Deviations from 
historical mean in 

SWE, Snowpack and 
Snowmelt (amount 

and timing) 

Multi-year water supply 
planning and drought 

preparedness. 

Floods Streamflow Peakflow 
{Pulse events} 

Frequency of Rain-on-
snow events and 

magnitude of 
associated run-off 

Reservoir operations and flood 
management. 

Water 
Supply 

Rainfall Annual cycle of 
Rainfall 

Rainfall ‘geometry’ 
(like SWE triangle) 
Including start date, 

length and magnitude 
of wet season & dry 

season. 

Multi-year supply planning, 
reservoir operations 

management, and estimating 
water demands. 

Water 
Supply 

Rainfall Monthly 
Rainfall 

% distributions of 
annual rainfall among 
different months (for 
specific time-periods 

Seasonal water supply 
planning, and reservoir 

operations management. 

https://journals.ametsoc.org/bams/article/doi/10.1175/BAMS-D-19-0296.1/345609/The-making-of-a-metric-Co-producing-decision
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Issue Hydroclimatic 
Phenomenon 

Aspect of 
Phenomenon 

Decision-relevant 
Metric 

Decision/Use 

2030, 2060 and 2100)  

Floods Rainfall Extreme 
Rainfall 

IDF curves, specifically 
values for 5,10, 25, 

100 year, 1-day 
storms. 

Flood and stormwater 
management. 

Water 
Supply 

Streamflow Seasonal 
Streamflow 
amount (in 
snowmelt 
season) 

Cumulative run off on 
July 1 

Annual water supply planning 
for the year is based on July 1 
reservoir level estimates (i.e. 

July 1 is the baseline). 

Water 
Supply 

Streamflow Low-end 
Streamflow 

Annual 7-day low flow Water quality management 
(issuing discharge permits), and 

planning water supply during 
dry years (determining permit 
limits for water withdrawals). 

Water 
Supply 

Streamflow Streamflow 
Timing 

Timing of center of 
mass 

Water supply planning for time-
sensitive uses (crops, timed 

water diversions, water 
ecosystems). 

Floods Streamflow Peakflow 1-, 3-, 7-, 15-, 30-, 60-
day maximum inflow 

volumes (design 
maximum flows) 

Reservoir management of high 
flows, and flood control.  

Floods Streamflow Peakflow Volume-duration-
frequency curves {for 
longer duration wet 

periods 3- day, 7-day, 
10-day etc.} 

Reservoir management of high 
flows, and flood control.  

Water 
Supply 

Streamflow Demand-
Supply gap in 
Streamflow 

Streamflow curves 
showing the general 
shape and timing of 
runoff supply and 

water demand, and the 
differential (or gap) 
between the two 

Water demand and supply 
planning. 
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Issue Hydroclimatic 
Phenomenon 

Aspect of 
Phenomenon 

Decision-relevant 
Metric 

Decision/Use 

Water 
Supply 

Streamflow Inter-annual 
variability 

Deviation from 
historical annual mean 

in true natural flow 
(unimpaired runoff) 

Water supply planning and use 
of supplemental water supplies. 

Water 
Supply 

Droughts/dry 
spells 

Water year 
types 

Probability of specific 
sequences of water 
year types based on 
Department of Water 
Resources (DWR’s) 
classification, (e.g. 8 

consecutive dry years) 

Water planning decisions 
including water rights and 
restrictions. Systems and 

operations are designed around 
worst case “design droughts” 

with specific historic sequences 
in mind.   

Water 
Supply 

Droughts/dry 
spells 

Extreme 
temperature 

Average daily 
maximum temperature 

Water demand projections. 

Water 
Supply 

Droughts/dry 
spells 

Extreme 
temperature 

Number of days over 
100°F  

Water demand projections. 

Water 
Supply 

Droughts/dry 
spells 

Extreme 
temperature 

Number of days in a 
year when the daily 

maximum temperature 
exceeds the 98th 

historical percentile of 
daily maximum 

temperatures between 
April and October. 

Water demand projections. 

4. Key scientific activities and results from Hyperion 

From the above long list of decision-relevant metrics, project Hyperion’s managers and 

scientists collectively developed case study science plans that identified a shorter list of 

scientific activities and metrics that will be a focus of the project (Table A1 in the Appendix).  

Out of this long list of decision-relevant metrics, project Hyperion’s stakeholders and scientists 

collectively decided to focus on the following metrics and scientific activities, as outlined in the 

case study science plans. These key scientific activities are as follows: Atmospheric rivers, 

Snow Water Equivalent (SWE) and Future Droughts. The rest of this section presents a 

narrative description of these three short-listed scientific activities. The key motivation, methods, 

results and limitations from each of the three scientific activities, are summarised below. 
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4.1. Atmospheric Rivers 

Summary 

● This work examines how precipitation associated with extreme Atmospheric Rivers 

(ARs) might change in the future. 

● The study finds that extreme ARs across California are likely to result in 20-50% higher 

amount of precipitation per AR event by the late-century.  

● These ARs will result in a higher fraction of precipitation that is rain instead of snow.  

4.1.1. Background and Methods 

Precipitation from atmospheric rivers (ARs) accounts for 20-50% of California’s annual water 

budget. Heavy precipitation often associated with ARs can be both beneficial to water supply 

and problematic for flood management.  Understanding changes in the characteristics 

(landfalling latitude, angle of impact, uplift intensity, total precipitation, fraction of precipitation 

that is rain, etc.) and downstream impacts (surface runoff, etc.) of future extreme ARs, is 

essential for planning activities undertaken by water agencies and communities, to secure 

freshwater resources and mitigate flood risk. The broad hypothesis for this work is that warmer 

future atmospheric and oceanic conditions alongside large-scale circulation shifts will likely yield 

extreme ARs that deliver more total precipitation and more fractional amounts of rain during 

events, when compared to historical storms. Overall, increases in total precipitation may be 

beneficial to water supply given appropriate infrastructure management, but may elevate flood 

risk in particular watersheds due to more rain-on-snow events and/or more overall extreme rain 

events. This research examines how precipitation from extreme ARs may change in the future 

in California, through the following research questions: 

1. How does the amount of total precipitation during AR events change by the 

late-century? Does this change scale according to thermodynamic theories?  

2. What fraction of total precipitation falls as rain instead of snow? Can ARs be 

counted on as snowpack-builders during cold-season storage for water 

resources in the Sierra Nevada? 

3. How do changes in total precipitation and precipitation phase translate to 

shifts in unrouted runoff?   

The ARs in GCM datasets were identified using a tracking algorithm for capturing integrated 

water vapor transport (water vapor times wind speed) above a certain threshold (Figure A1 and 

A2 in Appendix from Huang et al, 20202). CESM-LENS dataset (CESM run for 40 initial 

conditions) was used to identify historical (1996-2005) and future ARs (2071-2080 for RCP 8.5). 

Then the dataset was dynamically downscaled, using the Weather Research and Forecasting or 

WRF model, to generate high-resolution analogues of the ARs for 81, 27, 9 and 3 km domains 

event-by-event. From this, a subset of the most extreme ARs were chosen for further analysis. 

This analysis focused on 20 historical and 20 future landfalling ARs in each of three broad 

geographic regions in CA, (Northern, Central, and Southern CA) i.e. a total of 120 total ARs 
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were analysed. Using these changes in precipitation, such as in rain vs. snow, were analysed. 

The WRF output was also connected to a hydrological model for runoff analyses.  

4.1.2. Key Results 

According to preliminary model skill evaluation results, spatial resolutions less than 10km are 

necessary for accurately capturing extreme precipitation rates and spatial distributions in 

California’s Sierra Nevada region. Comparisons of simulated precipitation against gridded and 

in-situ observations across California, demonstrated strong agreement for extreme values when 

spatial resolutions less than 10km are used (Figure 2). There were major increases in skill with 

increased resolution going from 30km to about 10km. However, the gains in terms of skill for 

resolutions higher than 10km, were not dominant.  

In terms of future projections, total precipitation per AR is projected to increase between 20-50% 

by the late-century (Figure 3). Historically, intense event-total precipitation was distributed over 

the mid and high elevation regions over Sierra Nevada, especially over the northern part. Future 

changes show a shift of the precipitation intensification to the southern Sierra Nevada 

watersheds reaching 50%. There is also a notable increase of the lee-side precipitation 

(reaching more than 50%) with highly increased water vapor transporting to the downward side 

of the mountain ranges. This increase in precipitation may be a result of stronger orographic 

uplift of storms in the future. The jet stream across the whole Pacific is extended eastward 

under most climate change scenarios which gives slightly stronger winds. This, in turn, gives a 

slightly stronger uplift in vertical motion right across the Sierra and ultimately more water for 

windward sides of the watersheds.  

For the snow accumulation from the studied extreme ARs, in the highest-elevated mountainous 

regions of Southern Sierra Nevada (under Southern ARs) there may be 10-20% increase in 

snowpack due to heavier increased ARs-induced precipitation. But in the rest of CA there will be 

10-60% or even higher decline in snowpack suggesting a heavy increase in the rain component 

of the intensified precipitation under climate change (Figure 4a-d). In terms of unrouted runoff 

(without considering specific topography or management), mid-elevation is projected to encounter 

most intensified AR-associated runoff (with the loss of snowpack and heavier rainfall), likely 

doubling in the future (Figure 4e-h). Larger changes occur to the southward area followed by or 

(consistent with) the changing pattern from precipitation. This work suggests an increased risk of 

flood events in the Sierra’s under a warmer climate due to precipitation extremes. 

The research was also able to partition dynamic and thermodynamic contributions to the overall 

precipitation change by using a multi-linear regression method linking large-scale forcings to 

targeted fine-scale climate extremes. Results show that the vast majority of the simulated 

increase in precipitation associated with extreme ARs, stems from the thermodynamic increase 

in atmospheric water vapor due to warming (~80% contribution), with a smaller (but still positive) 

contribution (~20%) from increasing large-scale zonal wind strength. 
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Figure 2: Simulated vs observed precipitation from extreme ARs.  
(a) Event-total precipitation (mm/event) averaged over AR events making landfall along the sub-regions of U.S. West 
Coast from north to south, including Olympics-Cascades (two events), the Sierra Nevada (three events), and 
Southern California (two events) from ERA-Interim, WRF simulations, and PRISM. Pair values in the lower left corner 
of each subpanel are average and maximum grid box precipitation values (respectively) taken from the sub-region 
domains. (b) Simulated versus observed accumulated total precipitation for the wettest 1% of GHCND stations for 
each AR event (the scatter points include the values from all of the nine events). Mean absolute error (MAE) is 
reported in the upper part of each panel. (c) Smoothed topography versus native-grid accumulated total precipitation 
for the grid points shown in part (a) for all of the AR events over each region (the scatter points include grid-box 
values with event-total above 20 mm from corresponding ARs), y=x line is also depicted for contrasting purpose. 
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Figure 3: Precipitation and thermodynamic changes in simulated ARs, present vs. future (WRF 3km).  
The first two rows show precipitation results zoomed in on the Sierra Nevada region: a), b), e), and f) for historical 
and future averaged event-total and event maximum hourly precipitation rate from all 60 AR events in each period; c), 
d), g) and h) for absolute and relative future changes in event-total precipitation and event-maximum hourly 
precipitation intensity. Stippling in panels d) and h) denotes regions where changes are statistically significant at the 
p<0.1 level)). Sierra Nevada watershed boundaries are overlaid in all panels, denoted by black outlines.  
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Figure 4:Snowpack and runoff from the most extreme AR events, present vs. future (WRF 3km).  
a)-d) for historical and future averaged event-total snow accumulation and its changes from all 60 AR events in each 
period; e)-g) for historical and future averaged event-total runoff and its changes from all 60 AR events in each 
period. h) Grid-scale comparison of the event-total surface runoff at middle-elevation area (1000 m to 2500 m) over 
the Sierra watersheds, present vs. future. Sierra Nevada watershed boundaries are overlaid in all spatial panels, 
denoted by black outlines. This figure is from a manuscript under preparation hence the results may change. 

4.1.3. Discussion and Conclusions 

Extreme future ARs are likely to result in 20-50% higher amount of precipitation per AR event by 

the late-century, with notable patterns based on north vs. south portions of the Sierra Nevada and 

also between windward and leeward slopes. These ARs are also likely to result in a much higher 

fraction of precipitation that is rain instead of snow. Equally significant is the even larger simulated 

increase in hourly rainfall rates during extreme AR events. Such an increase could substantially 

increase the risk of flash flooding on smaller river systems and in urban areas. The magnitude of 

the projected increase in extreme Sierra Nevada lee-side precipitation during AR events could 

have major implications for southern California’s water supply and infrastructure, particularly in 

the Owens Valley. While a comprehensive assessment of these risks is beyond the scope of the 

present work, these findings motivate additional research to explore potential consequences.  

These projections are based on a subset of future storms (i.e. from a single model), and 

therefore represent only a small, yet plausible range of future conditions. Further research is 

required to assess other scenarios, as well as to examine changes in other aspects of ARs. 

However, the dominant role of thermodynamic effects on local downscaled precipitation, 

suggests that continued climate warming is very likely to bring increased precipitation per storm 

event. However, there is less certainty about the directionality of ARs i.e. whether they are 

expected to move north or south in the future. A better understanding of the directionality is 
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particularly important, as several watersheds in the state lie in an “in-between zone” in terms of 

directionality of ARs, so even a small change in direction towards north or south means that the 

ARs can totally miss key watershed areas.  

4.2. SWE triangle  

Summary: 

● This work examines the skill of various climate model datasets, and analyses future 

projections for SWE triangle metrics.  

● Snow Water Equivalent (SWE) triangle uses a fitted triangle to characterize the annual 

cycle of snow accumulation and melt through six metrics of management relevance: 

peak water volume and timing, snow accumulation and melt rates, and the lengths of the 

accumulation and melt seasons (Rhoades et al. 2018)3. 

● The study finds that models are better at representing the accumulation portion of the 

snow season than the melt season: snow melt rate being the most common failure mode 

across models. 

● Average peak SWE volume is expected to dramatically decline by the end of the 

century, with a general reduction in accumulation rate, accumulation season length and 

melt season length, although there are important differences in results from dynamical 

and statistical downscaling methods.  

4.2.1. Background and Methods 

Mountain snowpack is integral to water supply and security in the western US and has wide 

ranging impacts on agricultural productivity, ecological function, hydroelectric power, and 

tourism.  Yet, the simple question of how much snow is in the mountains still can’t be easily 

answered. Although many techniques have been developed to produce snowpack estimates, 

there is very limited inter-comparison of these techniques, particularly for decision-relevant 

metrics that focus on water resource management. This has resulted in a large degree of 

uncertainty in both historical and future snowpack estimates. A critical examination of the 

different observational and modeled snowpack datasets can provide a better understanding of 

the relative credibility of these datasets. Further, an analysis of future projections in relation to 

the relative skill of the different modeled datasets can provide a better understanding of the 

different uncertainties and reasons for these uncertainties in estimates of future snow 

predictions. In this way, the evaluation of snowpack can also act as a great litmus test for 

climate model performance as it requires appropriate representation of both temperature and 

precipitation, particularly with elevation. The key research questions addressed in this work are 

as follows: 

1. What are snowpack related metrics that are both decision-relevant for water 

resources management and tractable from a climate model development 

perspective?   
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2. How well are different snowpack processes and SWE metrics represented across 

different snowpack datasets (both observed and modeled), and what is their 

relative credibility?   

3. What do the different climate models say about snowpack decline in the future 

and does model choice, resolution, and boundary forcing, matter? 

4. How does future snowpack decline compare between dynamical and statistical 

downscaled datasets? 

As decision-relevant SWE metrics, six simple snowpack metrics (known as the SWE triangle) 

(Figure A3 and A4 in Appendix) were developed that linearize the major components of the 

snow season and can be easily applied across any gridded snow product. After identification of 

SWE metrics, an extensive intercomparison of publicly available snowpack products (that had 

data on daily snow water equivalent across at least 15-20 years) was conducted using a z-score 

analysis. The products that were evaluated included observationally constrained, model derived 

(i.e., bounded by atmospheric reanalysis and global climate model data), and statistically 

derived (i.e., observations update global climate model results) datasets, or hybridized versions 

of the aforementioned. A detailed description of the products examined are provided in Table A2 

in the Appendix. Particular focus was also provided on evaluating SWE triangle metrics for snow 

products in regions that are more relevant to water resource management (e.g., upstream 

regions of major reservoirs and/or regions central to water conveyance networks). If a Z score is 

0, the data set mean is exactly the same as the observed Sierra Nevada Snow Reanalysis 

(SNSR) data, and if the Z score is positive (negative) the data set mean is higher (lower) than 

SNSR. If a Z score falls outside of the range of 2 to −2 the given data set's mean is substantially 

different than the observed. 

4.2.2. Key Results 

Figure 5 provides detailed skill scores for the different observational and modeled snow 

datasets, for decision-relevant SWE triangle metrics including Snowpack accumulation rate 

(SAR), Total water volume at peak accumulation (TWV), SWE peak accumulation date (SPD), 

Snowpack melt rate (SMR), length of the accumulation season (AS), and length of the melt 

season (MS). The figure shows that even across observationally constrained snow products 

(NLDAS, Livneh, SNSR) there was a 2x difference in peak SWE volume, although they largely 

agree on SPD, AS and MS. The climate model derived SWE – ATM-reanalysis coupling dataset 

were generally low biased, for all SWE triangle metrics, highlighting the major role that 

atmospheric boundary conditions play in the simulation of snowpack.  SWE triangle metric 

performance and interannual variability in SWE is much more varied for the climate model 

derived SWE - GCM-RCM coupling dataset. In general, across model products and regions, the 

snow melt rate was too fast. This is somewhat alleviated with more refined model resolution 

which helps SAR and TWV (as shown for both dynamical downscaling and Climate model 

derived SWE – variable-resolution dataset) but is likely not the silver bullet to snow melt rate 

biases (and requires further research). The statistically downscaled snow products were in more 

agreement with observationally constrained snow products. However, melt season length was 

often too long, and the issue with snow melt rate was also present in these products, although in 

an opposite direction (i.e., slower snow melt rates). In general, it appears that models represent 
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the snowpack accumulation season (i.e., snowpack accumulation rate, accumulation season 

length, and peak SWE water volume) with more skill than the melt season. There may be some 

resolution dependencies in model skill for certain snow metrics: going from 50 km to 12 km, the 

more refinement of resolution appears to help snowmelt rate biases somewhat, but not entirely. 

In order to formally quantify errors due to resolution and climate model choice, a framework was 

created to isolate the relative contributions of snowpack simulation error associated with 

inaccuracies in precipitation, surface temperature, topography, etc. (Figure A64). This framework 

enables model developers to better isolate cause and effect in model bias and inform 

stakeholders on why a given model got the right/wrong answer for the right/wrong reasons.  

Until a more detailed model sub-selection analysis is available, this multi-metric, multi-dataset 

SWE triangle evaluation framework samples across many different datasets and uses an 

ensemble of models rather than choosing a specific skill-based sub-set.   

Across all regions assessed, a high-emissions scenario results in a dramatic decline in average 

peak SWE volume by the end of the century (Figure 6). There is a general reduction in both 

accumulation rate and accumulation season length, likely due to changes in precipitation phase 

from snowfall to rainfall as a result of changes in surface temperature. Melt season length in the 

state shows a general shortening. Large differences are seen between dynamical and statistical 

downscaling methods (Refer to Figure A5 in Appendix for statistical downscaling results):  

● by mid-century, average peak SWE volume is shown to reduce by 31% (statistical) to 

56% (dynamical), or a 1-5 million-acre feet difference between methods 

● by end-century this amplifies to 57% (statistical) and 81% (dynamical), or a 2-3 million-

acre feet difference.  
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Figure 5: Z scores for SWE triangle metrics across the 10 upstream analysis regions. 
The six SWE triangle metrics include snowpack accumulation rate (SAR), total water volume at peak accumulation 
(TWV), snowpack peak accumulation date (SPD), snowpack melt rate (SMR), the length of the accumulation season 
(AS), and the length of the melt season (MS). The Z score is computed by using the mean and standard deviation 
from SNSR. Red (blue) indicates positive (negative) Z score bias, and saturation indicates the magnitude of bias. 
Similar to previous figures, text color is used to distinguish resolution in (b) and global climate model forcing data set 
in (c). SWE = snow water equivalent; SNSR = Sierra Nevada Snow Reanalysis. 
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Figure 6: SWE triangle metrics for NACORDEX simulations across different reservoir headwater regions in 
California. 
SWE metrics for the nine North American Coordinated Regional Climate Downscaling Experiment simulations across 
10 reservoir headwater regions in California and the northern, central, and southern aggregate regions. Figure shows 
future changes in these metrics for mid-century and the end of century with RCP 8.5. Color is used to distinguish 
1985–2005 (white), 2039–2059 (orange), and 2079–2099 (red). For Peak Water Volume the top x axis is used for 
individual regions and the bottom x axis is used for aggregate regions. MAF = million acre‐feet. 

4.2.3. Discussion and Conclusions 

Identifying exactly how much snowpack is in the mountains is a messy business given its multi-

scale dependencies. The choice of a reference dataset is critically important to answering this 

question and appears to be region specific when evaluating consistency (e.g., peak SWE water 

volume) across publicly available observationally constrained snow products.  In general, 

models appear to better represent the accumulation portion of the snow season than the melt 

season.  In particular, snow melt rate appears to be the most common failure mode across 

models, with melt rates generally too fast. Statistically downscaled products (e.g., LOCA) have 

the best historical match with the observationally constrained snow products. However, this skill 

may not translate into the future as stationarity was likely introduced in the training period. This 

is problematic as the choice of a downscaling technique has big implications on the projected 

loss in average peak SWE volume at mid-century, 31% vs 56% reduction or a 1-5 million-acre 

feet difference, and end-century, 57% vs 81% or a 2-3 million-acre feet difference. 

Snow melt rate issues may be model resolution dependent, as this study sampled an uneven 

number of simulations from 50 km (10 simulations), 25 km (5 simulations), and 12 km (2 

simulations).  Further research is needed to explore this properly, particularly through filling in 

gaps in the simulation matrix (e.g., use more atmospheric reanalysis boundary forcings and 

more cross-resolution simulations) produced by important coordinated regional downscaling 

efforts such as the North American Coordinated Regional Downscaling Experiment (NA-

CORDEX). 
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Snowpack is highly sensitive to surface temperature (and its impact on precipitation phasing) 

and most climate reports are virtually certain that surface temperatures have and will continue to 

increase heading into the next century. Hence, there is reasonable confidence in these 

projected changes in peak SWE volume by mid- and end-of-century, if the high emission 

scenario comes to fruition. 

4.3. Droughts of the future 

Summary: 

● This work examines how a drought analogous to the 2012-2016 California drought, 

would look like in 2042-2047, in light of climate change (RCP 8.5) (Ullrich et al 20185 and 

Mount et al 20186). 

● The WRF model used in this work, produces temperature and precipitation climatologies 

that match closely with observations, particularly in drought years (WY2013-2016). 

● Overall, future projections indicate drier regions and periods becoming drier, and wetter 

regions and periods becoming wetter i.e. there is an increased seasonality of 

precipitation. Yet, the increased precipitation does not translate to increased snowpack 

due to warmer temperatures, leading to a net loss of 22% in peak SWE by mid-century.  

4.3.1. Background and Methods 

The California drought of 2012–2016 was a record‐breaking event with extensive social, 

political, and economic repercussions. The impacts were widespread and exposed the difficulty 

in preparing for the effects of prolonged dry conditions. As of October 2016, California had an 

accumulated “rain debt” from the 2012-16 period equal to one year of average precipitation. The 

persistent dry conditions were finally broken up by the anomalously wet winter of 2016-2017. 

With this drought fresh in the minds of stakeholders and policymakers, it provides an excellent 

prototype for a future drought situation. There is little doubt that climate change will only 

exacerbate future droughts. Examining the character of how these extreme droughts will look 

like in the future can help to structure future drought planning, around a drought scenario that is 

realistic and modeled after a memorable historical analog. The hypothesis is that a future 

drought exacerbated by climate change will produce drier conditions, higher temperatures, 

increased precipitation, decreased snowpack and soil moisture, and increased forest stress. 

The specific research question that this work addresses is: 

1. How would a drought analogous to the 2012-2016 California drought look like in 

the mid-century in light of climate change? 

The 2012-2017 period was modeled using the Weather Research and Forecasting (WRF) 

model driven by observed boundary conditions. Climatological validation of near‐surface 

temperature and precipitation fields was performed for the model. An analogous mid-century 

drought scenario was built over the period 2042-2047 by modifying lateral boundary conditions 
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(with a constant delta to match temperature projections from RCP8.5 CMIP5 future simulations), 

sea-surface temperatures (also using delta approach), and greenhouse gas concentrations, in 

line with future projections. The relative humidity was kept constant and the California region 

was modeled at a resolution of 9 km. 

4.3.2. Key Results  

Before examining the future simulations, the WRF model’s skill was evaluated by comparing 

observed and modeled temperature and precipitation. In general, the model produces a 

temperature climatology that matches very closely with observations, albeit with a small warm 

bias in the Central Valley and a cool bias in the mountain region. Modeled precipitation tends to 

match closely with observations, particularly in drought years (WY2013-2016) (Figure 7). 

However, simulated precipitation underestimates observations in the Klamath (in the northwest 

of the State), likely due to insufficient resolution of the underlying topography. Further, 

precipitation is overestimated in WY2017 in the Sierra Nevadas. As precipitation and 

temperatures in California are primarily driven by large-scale processes that are captured well in 

these models, and most wintertime precipitation is associated with large-scale features that 

enter the domain from the west, the model did a good job of capturing the climatology of this 

region. Snowpack bias persisted in the model. As the quality of the observational snow data is 

poor, it is difficult to draw definite conclusions  

Future projections showed an increase in temperature and temperature extremes, drier regions 

and periods becoming drier, and wetter regions and periods becoming wetter (Figures 8 and 9).  

There was an increased seasonality of precipitation associated with a wetter winter season and 

drier summer season.  Because of increased temperatures, increased precipitation does not 

translate to increased snowpack, the Peak SWE diminished between 16% to 30% across the 

five water years, resulting in a net loss of 22% in the mid-century period as compared to the 

historical period. There is a stronger impact on lower-altitude snowpack than higher-altitude. 

This reduction in snowpack led to drier soils in the Sierra Nevada through the summer season 

and a clear elevation-dependent warming signal in all seasons. The higher elevations 

experience more warming than the lower elevations in DJF (December-January-February) as 

well as in JJA (June-July-August).  Soil moisture was largely unchanged in the Central Valley. 

Evapotranspiration dropped in the Sierra Nevadas because of soil water depletion and was 

correlated with an increase in forest stress. Widespread die-off of the Sierra Nevada forests is 

likely to impact mid-century drought conditions. 
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Figure 7: Simulated annual average precipitation (mm/day) and reference precipitation from PRISM gridded 
observations for each simulated year. 
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Figure 8: North Sierra & Tulare Basin precip index from simulated historical and projected drought years  
North Sierra precipitation eight‐station index and (right) Tulare Basin precipitation six‐station index from simulated 
historical and projected drought years showing wet years getting wetter and dry years getting drier.  
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Figure 9: Absolute change, future minus historical in the Central Valley and Sierra Nevada regions. 
Absolute change; future (WY2043 to WY2046) minus historical (WY2013 to WY2016) in monthly precipitation rate, 
soil moisture, and evapotranspiration in the Central Valley and Sierra Nevada regions. Panel (a) shows seasonality of 
precipitation with wet winters becoming wetter and dry summers becoming drier. Panel (b) shows higher precipitation 
in wintertime leading to higher soil moisture, but not enough to counteract extreme drying in summertime. It also 
shows that this change in soil moisture is primarily found in the Sierra Nevada region. Panel (c) shows that the 
changes in ET rates are highly seasonal. ET rates are increased Oct-May when the baseline soil moisture is relatively 
high. ET either decreases or remains unchanged in the face of the projected warming during the drier months. 

4.3.3. Discussion and Conclusions 

The conclusions drawn from this study reflect our best estimates of how a future drought will 

behave. Temperatures during the drought period are expected to be 0.8-1.4°C higher in the 

Central Valley, and 1.2-2.0°C higher in the mountainous and interior regions. Extreme 

temperature days (>40°C) are expected to increase by 50% in the Central Valley.  Average 

water year precipitation through the mountains increases by approximately 5% across all years, 
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there was no significant change in precipitation elsewhere. More extreme precipitation days (0.5 

days in dry years, 1 day in wet years) are expected, and peak total snow water equivalent 

(SWE) water volume diminished between 16% to 30% across the five water years from 32.6 

MAF to 25.5 MAF, a net loss of 7.1 MAF or 22%.   

Further research on snow processes is necessary to understand the causes for persistent 

model snow biases.  In addition, this study does not incorporate dynamical changes, which tend 

to be more poorly captured in global climate models. A better understanding of the large-scale 

dynamical processes is needed to further examine how changing dynamics may affect these 

conclusions. 
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Appendix 1 

Table A1:  List of metrics and summary of scientific activities pursued by Hyperion project 

S No. Science Activity Lead Scientists  Description of Research & 
Papers/Conference Abstracts based on the 
work 

1.  Atmospheric 
Rivers: Model skill 
and future 
projections 

Alex Hall, Neil Berg 
(no longer with 
UCLA), 
Xingying Huang (no 
longer with UCLA) 

This work develops a novel framework involving 
dynamical downscaling of individual historical 
and future extreme precipitation events 
produced by a large ensemble of a single global 
climate model. This framework is applied to 
once-in-a-decade “atmospheric river” storms in 
California, showing a large and systematic 
increase in precipitation--up to 35-40% for event 
total accumulation and 55-60% for hourly 
maximum intensity. Most of the increase (~80%) 
arises from thermodynamically-driven increases 
in water vapor, with a smaller contribution by 
increased zonal wind (~20%), underscoring the 
high likelihood of future extreme precipitation 
increases in California. 

Papers:  

● AGU 2019 (not updated): 
https://agu.confex.com/agu/fm19/meetingapp.
cgi/Paper/491712 

● Updated results at: Huang, Xingying, Daniel 
L. Swain, and Alex D. Hall. "Future 
precipitation increase from very high 
resolution ensemble downscaling of extreme 
atmospheric river storms in California." 
Science Advances 6.29 (2020): eaba1323. 

2.  Snow Water 
Equivalent (SWE) 
triangle: Model 
skill and future 
projections 

Alan Rhoades This work develops a multi-metric framework to 
assess agreements and disagreements of the 
annual snow season in spatially continuous 
snow water equivalent (SWE) estimates derived 
from reanalyses, regional and variable-resolution 
climate model simulations and a statistical 
downscaling approach. Large differences in 
historical estimates of peak SWE volume were 
found, even across reanalysis products, and 
climate models generally had too fast of a snow 
melt rate. Under a high-emissions scenario, an 
ensemble of regional climate model simulations 
(i.e., NA-CORDEX) project a dramatic decline in 
peak SWE volume upstream of 40% of 
California’s surface reservoir storage with a 56% 
reduction by 2060 and an 81% reduction by 
2100.  These projections are more dire than 
those derived from statistically downscaled (i.e., 

https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/491712
https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/491712
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S No. Science Activity Lead Scientists  Description of Research & 
Papers/Conference Abstracts based on the 
work 

LOCA) products where a reduction of 31% by 
2060 and 57% by 2100 was found.  
 
Papers: 
● Rhoades, Alan M., Andrew D. Jones, and 

Paul A. Ullrich. "Assessing Mountains as 
Natural Reservoirs With a Multimetric 
Framework." Earth's Future 6.9 (2018): 1221-
1241. https://doi.org/10.1002/2017EF000789 

● Rhoades, Alan M., Andrew D. Jones, and 
Paul A. Ullrich. "The Changing Character of 
the California Sierra Nevada as a Natural 
Reservoir." Geophysical Research Letters 
45.23 (2018): 13-008. 
https://doi.org/10.1029/2018GL080308 

● AGU2019: https://agu-
do03.confex.com/agu/fm19/meetingapp.cgi/P
aper/508829 

3.  Precipitation IDF 
curves and other 
metrics: Model 
skill evaluation 

Abhishekh 
Srivastava and 
Richard Grotjahn 

Precipitation frequency (PF) estimates for 
extreme precipitation events are useful decision-
relevant quantities among water managers. Our 
objective and quantitative framework for 
computing PF estimates of any duration uses 
known techniques in a novel combination. The 
24-h PF estimates in the Kissimmee-Southern 
Florida watershed (flat topography) and the 
Sacramento-San Joaquin watershed (complex 
topography) demonstrate the applicability of this 
approach in regions of any geographical 
complexity. Our results are compared with that 
of the NOAA Atlas 14 reports and show that for 
most of the stations the two estimates are 
statistically indistinguishable; and, the 
confidence intervals of our estimates are 
narrower than those of the NOAA estimates. Our 
approach is applicable to a variety of datasets 
and provides a baseline for assessing 
performance of climate models in historical 
simulations – a necessary first step towards 
analyzing future projections. 
 
Papers: 
● Srivastava, A., R. Grotjahn, and P.A. Ullrich 

(2019) "A unified approach to evaluating 
precipitation frequency estimates with 
uncertainty quantification: Application to 
Florida and California watersheds" J. 
Hydrology 578, pp. 124095, doi: 
10.1016/j.jhydrol.2019.124095.  

https://doi.org/10.1002/2017EF000789
https://doi.org/10.1029/2018GL080308
https://agu-do03.confex.com/agu/fm19/meetingapp.cgi/Paper/508829
https://agu-do03.confex.com/agu/fm19/meetingapp.cgi/Paper/508829
https://agu-do03.confex.com/agu/fm19/meetingapp.cgi/Paper/508829
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S No. Science Activity Lead Scientists  Description of Research & 
Papers/Conference Abstracts based on the 
work 

4.  Hydrological 
simulations from 
SHUD  

Lele Shu 
 

The Solver for Hydrologic Unstructured Domain 
(SHUD) is a multi-process, multi-scale and multi-
temporal hydrological model that integrates 
major hydrological processes and solves the 
physical hydrological equations with the semi-
discrete Finite Volume Method. 
SHUD is a robust integrated modeling system 
has the potential for providing scientists with new 
insights into their domains of interest and will 
benefit the development of coupling approaches 
and architectures that can incorporate scientific 
principles. The SHUD modeling system can be 
used for applications in (1)hydrological studies 
from hillslope scale to regional scale, (2) water 
resource and stormwater management, (3) 
coupling research with related fields, such as 
limnology, agriculture, geochemistry, 
geomorphology, water quality, and ecology, (4) 
climate change, and (5) land-use change.  In 
summary, SHUD  is a valuable scientific tool for 
any modeling task associating with hydrological 
responses. 
 
Papers: 
● AGU 2018 abstract: 

https://agu.confex.com/agu/fm19/meetingapp.
cgi/Paper/504134 

● Journal article ready to submit to 
Geoscientific Model Development.  

5.  Identify model 
drivers of SWE 
biases 

Yun Xu (no longer 
with LBL), Alan 
Rhoades and Andy 
Jones 

This work develops a framework to isolate the 
relative contributions of snowpack simulation 
error associated with inaccuracies in 
precipitation, surface temperature, topography, 
etc. for California.   
Overall, in this study it was found that models 
generally predict less SWE compared to 
Landsat-Era Sierra Nevada Snow Reanalysis 
(SNSR) dataset. Unresolved topography 
associated with model resolution contribute to 
dry and warm biases in models. Refining 
resolution from 0.44° to 0.11° improves SWE 
simulation by 35%. To varying degrees across 
models, additional difference arises from spatial 
and elevational distribution of precipitation, cold 
biases revealed by topographic correction, 
uncertainties in the rain-snow partitioning 
threshold, and high ablation biases. 
This framework enables model developers to 
better isolate cause and effect in model bias and 
enlighten stakeholders on why a given model got 

https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/504134
https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/504134
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S No. Science Activity Lead Scientists  Description of Research & 
Papers/Conference Abstracts based on the 
work 

the right/wrong answer for the right/wrong 
reasons.  
 
Papers: 
● Xu, Yun, Andrew Jones, and Alan Rhoades. 

"A quantitative method to decompose SWE 
differences between regional climate models 
and reanalysis datasets." Scientific reports 
9.1 (2019): 1-11. 

6.  Variable 
resolution domain 
sensitivity 
experiments 

Alan Rhoades Variable-resolution global climate models are a 
new means by which to provide dynamically 
downscaled climate data and are currently being 
vetted for resolution, refinement domain size, 
and parameterization based sensitivities. This 
study assesses the role of refinement domain 
size over the North Pacific Ocean, particularly 
longitudinal extent, in shaping variable-resolution 
in the Community Earth System Model (VR-
CESM) simulations of winter (DJF) hydroclimate 
of the western U.S. through modifications in 
dynamical and/or thermodynamical drivers. The 
study finds that there is minimal impact of 
refinement domain size on model fidelity in 
representing western U.S. hydroclimate and 
show that topographic resolution and land-
surface model choice have a greater influence. 
 
Papers: 
● AGU2018 abstract: 

https://ui.adsabs.harvard.edu/abs/2018AGUF
M.A23N3111R/abstract 

● Rhoades, Alan M., et al. "Influences of North 
Pacific Ocean Domain Extent on the Western 
US Winter Hydroclimatology in Variable‐
Resolution CESM." Journal of Geophysical 
Research: Atmospheres 125.14 (2020): 
e2019JD031977. 

7.  

Track the 
precipitation 
dependence on 
stationary 
circulation 
patterns 

Simon Wang  

Amplified and persistent ridges in western North 
America are recurring features associated with 
precipitation deficits in California.  At present, 
climate model projections do not indicate any 
significant change in these particular 
precipitation‐modulating processes. 

 
The recent drought event (2012–2016) lasted 
through both La Niña and El Niño episodes, 
suggesting additional climate drivers are 
important in addition to the commonly perceived 
El Niño‐Southern Oscillation. Diagnostic 

https://ui.adsabs.harvard.edu/abs/2018AGUFM.A23N3111R/abstract
https://ui.adsabs.harvard.edu/abs/2018AGUFM.A23N3111R/abstract
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S No. Science Activity Lead Scientists  Description of Research & 
Papers/Conference Abstracts based on the 
work 

analyses performed by this team indicate that, 
while the Pacific North American (PNA) and 
North Pacific Oscillation (NPO) do not directly 
cause the drought experienced in California, the 
relationships between them and with the upper 
air circulation pattern do modulate the spatial 
pattern of precipitation deficits. The positive PNA 
relative circulation leads drier northern 
California, and negative NPO-related circulation 
leads southern California to be drier during a 
given drought. The types of drought in this 
region emerge mostly from the combination of 
two PNA and NPO relative oceanic and 
atmospheric oscillations. 
 
Papers: 
● Lin, Y.-H., L. Hipps, S.-Y. Wang, and J.-H. 

Yoon, 2017: Empirical and modeling analysis 
of the circulation influences on California 
precipitation deficits. Atmospheric Sciences 
Letters, DOI: 10.1002/asl.719 (published on 
04 January 2017) 

8.  

Droughts of the 
future 

Paul Ulrich 

The California drought of 2012–2016 was 
notorious for breaking numerous temperature, 
precipitation, and snowpack records. It was also 
a warning of the types of droughts that are likely 
to be expected in light of climate change. In 
order to better understand and quantify the 
characteristics of future drought in California, this 
study uses a climate modeling technique known 
as pseudo global warming to simulate a 
midcentury (2042–2046) drought that is realistic 
in light of this recent historical analogue. The 
study finds that overall, the midcentury drought 
is much worse than its historical counterpart, 
with many more extreme heat days, record‐low 

snowpack, increased soil drying, and record‐high 

forest loss. This study points to the extensive 
effort that must now be invested to prepare for 
the next big drought. 
 
Papers: 
● Ullrich, P. A., et al. "California's Drought of 

the Future: A Midcentury Recreation of the 
Exceptional Conditions of 2012–2017." 
Earth's future 6.11 (2018): 1568-1587. 
https://doi.org/10.1029/2018EF001007 

● Mount, J., and B. Gray. "Managing drought in 
a changing climate: Four essential reforms." 
Public Policy Institute of California, San 

https://doi.org/10.1029/2018EF001007
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S No. Science Activity Lead Scientists  Description of Research & 
Papers/Conference Abstracts based on the 
work 

Francisco (2018). 

 

 
Figure A1: Spatial distributions of moisture fluxes from AR events 
Spatial distributions of moisture fluxes from the 60 historical (left) and future (right) AR events (WRF 81 km). 
Composite hourly instantaneous IVT map: the spatial moisture flux transport pattern averaged over each 60 ARs for 
historical and future periods when the maximum hourly precipitation occurs over California.  

 

 
Figure A2: IVT distributions from CESM-LENS from historical and future periods 
IVT distributions from 40 CESM-LENS ensemble members for near-coastal grid boxes over California from historical 
(1996-2005) and future (2071-2080) periods. Left two panels:  Red dots represent the five-day running mean IVT 
intensity starting for the entire ten-year historical and future periods. Note that this essentially includes all ARs, not 
just the most extreme events. On the plot, IVT is truncated at the lower bound at 250 km/m/s. Each red horizontal 
band is a collection of points representing IVT values from each coastal grid box along the California coast. Within 
each band, values from each of the 40 individual CESM-LENS members are stacked one on top of the other. The 
corresponding IVT values for each of the 60 extreme AR events selected for downscaling during each period are 
denoted by black circles. Rightmost panel: Locations of the corresponding near-coastal grid boxes, with 3 km 
topography represented by the color contours over land. (Sierra Nevada watershed boundaries are also overlain with 
black lines.) 
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Figure A3: Snow water equivalent (SWE) triangle metrics 
The six snow water equivalent (SWE) triangle metrics visually represented and overlaid on top of the observationally 
constrained Livneh, 2015 dataset historical average snowpack life cycle for the California Sierra Nevada. 

 
Figure A4: Headwater regions of 10 major reservoirs in Sierra Nevada, used to evaluate SWE datasets 
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Figure A5: SWE triangle metrics for LOCA simulations across different headwater regions in California. 
Projections from Localized Constructed Analogs (LOCA) statistical downscaling technique applied to 32 GCMs. 

 
Figure A6: Errors in peak SWE decomposed and attributed to errors in other variables 
NA-CORDEX simulations bounded by atmospheric reanalysis conditions (i.e., ERA-interim), and evaluated in 10 
headwater regions of CA. Errors in peak SWE decomposed and attributed to concomitant errors in precip (P), surface 
temp (T), topography (topo-T), rain-snow thresholding & ablation. Red (blue) indicates negative (positive) bias. Model 
resolution is indicated (i.e., 44 = 0.44 [50km], 22 = 0.22 [25km], and 11 = 0.11 [12km] degrees).  Black whiskers 
indicate 95% confidence interval of error.  SWE = snow water equivalent; SNSR = Sierra Nevada Snow Reanalysis is 
used for model evaluation of total SWE error and ablation; PRISM = Parameter-elevation Regressions on 
Independent Slopes Model is used for the model evaluation of P, T, and topo-T. 
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Table A2: List of datasets evaluated for SWE triangle metrics  

Downscaling 

method 

Dataset name Product summary Resolution 

(evaluated at 

12km) 

Time 

period(s) 

assessed 

Observationally 

constrained 

snow products 

Sierra Nevada  

Snow Reanalysis 

(SNSR) (reference 

dataset for CA) 

Landsat satellite data, 

NLDAS-2 meteorological 

forcing, Bayesian statistical 

relationships, and SSiB land-

surface model. 

90m – 1 product 1985-2005 

 Livneh, 2015 (L15) 

(reference dataset  

for all regions) 

In-situ observations, NCEP 

reanalysis meteorological 

data, MT-CLIM based spatial 

interpolation, and bounded 

simulations of VIC land-

surface model.  Estimates 

updated with PRISM 

normals. 

6km – 1 product 1985-2005 

 North American Land 

Data Assimilation 

System, phase 2 

(NLDAS-2) 

Land-surface models 

bounded by NCEP reanalysis 

meteorological data 

14km – 2 products 1985-2005 

Dynamical 

Downscaling 

North American 

Coordinated Regional 

Climate Downscaling 

Experiment (NA-

CORDEX) 

Five regional climate models 

bounded by ERA-interim 

atmospheric reanalysis data. 

50km – 3 products 

25km – 3 products 

12km – 2 products 

1985-2005 

 NA-CORDEX Six regional climate models 

bounded by five global 

climate model datasets. 

50km – 7 products 

25km – 2 products 

1985-2005 

2039-2059 

2079-2099 

Variable-

Resolution 

Global Climate 

Model 

Variable-Resolution in 

the Community Earth 

System Model (VR-

CESM) 

Global climate model 

simulation (atmosphere-land 

coupling) with monthly 

prescribed sea-ice and sea-

surface temperatures. 

50km – 1 product 

25km – 3 products 

12km – 1 product 

6km – 1 product 

1985-2005 

2000-2015 

Statistical 

Downscaling 

(CA only) 

Localized Constructed 

Analogs (LOCA) 

In-situ observations (analog 

days) update 32 global 

climate model simulation 

results which are used to 

bound VIC land-surface 

model simulations. 

6km – 32 products 1985-2005 

2039-2059 

2079-2099 
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