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Introduction 

This narrative case study report is a synthesis of key discussions and preliminary scientific 

results for the Colorado Headwaters region, undertaken as part of the Hyperion project (2016-

19). Project Hyperion (now continuing as the HyperFACETS project) is a basic science project 

that aims to advance climate modelling by evaluating regional climate datasets for decision-

relevant metrics. While there has been an explosive growth in the number of regional climate 

datasets available to users, there is limited understanding of the credibility and suitability of 

these datasets for use in different management decisions. Hyperion aims to address this need 

by developing comprehensive assessment capabilities to evaluate the credibility of regional 

climate datasets, understand the processes that contribute to model biases, and improve the 

ability of models to predict management relevant outcomes.  

Since decision-relevance is a core motivation for the project, Hyperion is designed on the 

principles of co-production. The project brings together scientists from nine research institutions 

and managers from twelve water agencies in four watersheds: Sacramento/San Joaquin, 

Colorado Headwaters, South Florida, and Susquehanna. The project structure explicitly allows 

for both the groups to co-develop the science plan and research questions, in addition to co-

producing the science itself. The scientists include atmospheric and earth system scientists as 

well as hydrologists. The water managers, depending on the agency, have functions including 

planning, operating and managing water quality, water supply, stormwater management, flood 

control, and water infrastructure design.       

This narrative report provides an overview of the co-production process in Hyperion (Chapter 1), 

the regional hydro-climatic context and challenges (Chapter 2), broad climate information needs 

of water management agencies (Chapter 3), and short summaries of the key scientific activities 

undertaken for the region (Chapter 4). This information is based on the project’s co-production 

engagements and preliminary scientific results. Some of the preliminary results may be updated 

or refined as they go through the peer-review process. While this report is based on the 

perspectives of water management agencies that were part of Hyperion, we hope that the 

insights and methodologies that were developed are broadly applicable to other agencies in the 

region as well. 
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1.  Co-production in Hyperion 

In Hyperion, as far as possible, the research questions, approaches and results were co-

produced through regular structured and unstructured engagements between scientists and 

managers (Figure 1). Structured engagement methods included workshops, remote and in-

person focus-group discussions, and quarterly project update calls. There were also continual 

less-structured, informal conversations over telephone calls and emails.  

 

 

 

 

 

 

 

 

 

Figure 1: Co-production process and timeline  
Summarizes key engagement activities along with important outcomes at each stage (depicted by the blue document 

icon). ‘Sci’ refers to Scientists, ‘WM’ refers to Water Manager and ‘HC ph.’ refers to Hydroclimatic Phenomena. 



5 

2.  Regional hydro-climatic context & challenges 

The Colorado River is the primary source of water for the Upper Colorado river basin (UCRB). 

Other important rivers for the state include South Platte, Arkansas, and Rio Grande, which 

interact with UCRB as far as water rights are concerned. In UCRB, streamflow is heavily 

dependent on snowpack, with a small amount of water coming from summer monsoon rains. 

The predominant water use of the basin is agriculture, ranching, and hydropower, in addition to 

other municipal, industrial and environmental uses. Two-thirds of water that originates in 

Colorado is committed by interstate law and international treaty to other states and Mexico.  

Eighty percent of the state’s precipitation is stored (as snowpack) in the western part of the state 

while 90% of the population resides in the eastern side. Colorado’s Front Range municipalities 

and eastern plains agricultural irrigators have been importing water primarily via tunnels, from 

the UCRB to meet local water supply needs. For example, transbasin diversions account for 

more than 40% of the water that Denver Water delivers to its customers, while for the 

organizations belonging to the Front Range Water Council, water diverted from the UCRB is 

estimated to account for 72% of the water delivered to their customers.  

One of the key climate-related challenges facing the region is a less-resilient snowpack, which 

has impacted the timing and magnitude of streamflow. For example, reduced late-summer flows 

due to snowpack melt, impacts farming and ranching operations. Extreme events such as 

droughts and floods are also of concern. Specifically, recent droughts have led to reduced and 

variable water supply over sustained periods of time. Temperature extremes and associated 

increases in evapotranspiration (ET) are also key challenges for the agricultural sector and 

particularly when combined with reduced snowpack. 

Climate and hydrological data is used in planning for water dependent systems (e.g., from the 

Colorado River Forecast Center). The state’s 2003 strategic water plan detailing water 

conservation efforts was modified to address climate change issues. The state’s drought and 

flood response planning efforts also include climate and hydrological data. Some long-term 

infrastructure plans (such as reservoir operations) use hydrological forecasts in their planning.  

In terms of information gaps, uncertainties in modeling the region is a key problem, which is 

related to large interannual climate variability. Spatial and temporal resolution is also an issue, 

as precipitation varies sharply over short distances. Responses to events such as El Niño vary 

regionally due to the influence of topography. Specific impacts of only temperature (independent 

of precipitation) could be better understood. Improved understanding of projected increases in 

extreme events is required. Snowpack and soil moisture data for the region are very limited. 

Better understanding of existing data and models is also required, e.g. which 

data/models/approaches/products are most appropriate for what specific uses. A complicating 

factor is that, typical metrics used to characterize drought in the climate literature (and in the 

Drought Monitor) (e.g. PDSI) are not commonly applied in practice. 
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3. Climate information needs for water management 

3.1. Overview 

The key decision-relevant hydroclimate phenomenon for Colorado is Streamflow. Since most of 

the state relies on water in the rivers, planning models and systems are based on the amount of 

water that is or will be in the river. Since most water in the rivers comes from snowpack, therefore 

snowpack dynamics are another key hydroclimate phenomenon of importance. Rainfall metrics, 

while interesting, are less important than snowpack. Droughts are also important events, and 

while not as important as streamflow, certain drought metrics can be informative for specific water 

management decisions. 

In terms of temporal scale for planning, stakeholders suggested that they would plan 50 years out 

into the future +/- 15 years. From a spatial scale, reservoir in-flow estimates are of importance 

(one example is the Taylor Park reservoir). Sub-basin level spatial information is of interest for 

certain drought and water metrics, specifically in Upper Colorado, where two regions within close 

proximity can also differ substantially in their characteristics. In addition, the structure of water 

rights in the region makes sub-basin level spatial resolution important. In terms of the types of 

simulations that would be useful, managers acknowledged that currently most planning is done 

based on simple 50-100 year simulations of the future, but simulations that recreate a worst-case 

scenario event could be of potential interest to them. However, the limitations of climate models 

in predicting such events should be made explicit and transparent.  

3.2. List of decision-relevant metrics and their importance 

In order for science to be actionable, resource managers need information on decision-relevant 

climatic metrics. Therefore, one of the first goals of Hyperion was to co-produce the decision-

relevant metrics for different management decisions in each of the case study regions. From the 

water managers’ perspective, such metrics quantitatively describe climatic phenomena that are 

directly related to practical management problems; changes in these quantities would 

necessitate shifts in water infrastructure planning and operations. From the scientists’ 

perspective, these metrics can be used to test model fidelity for decision-relevant phenomena 

and hence push model development and scientific inquiry in more use-inspired directions. Table 

1 represents the decision relevant metrics, along with their potential importance, that were 

developed through iterative engagements between Dec 2016 to Nov 2017. This table is referred 

from the published journal article titled “The making of a metric: Co-producing decision-relevant 

climate science” by Jagannathan, Jones and Ray.1 

 

 

 

 
 

https://journals.ametsoc.org/bams/article/doi/10.1175/BAMS-D-19-0296.1/345609/The-making-of-a-metric-Co-producing-decision
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Table 1: Examples of decision-relevant metrics for each region 
The table highlights management issues, hydroclimatic phenomena, aspect of phenomena and then each decision-

relevant metric. The last column also describes some of the potential decisions or uses for these metrics that were 

identified by the case study water managers. 

Issue Hydroclimatic 
Phenomenon 

Aspect of 
Phenomenon 

Decision-relevant 
Metric 

Decision/Use 

Water 
Supply 

Streamflow Seasonal 
Streamflow 
amount (in 
snowmelt 
season) 

Cumulative run-off 
from April-July 

(Reservoir in-flow 
estimates) 

Water supply planning in terms 
of forecasted water volumes. 

Water 
Supply 

Streamflow Seasonal 
Streamflow 
amount (in 
snowmelt 
season) 

Cumulative run-off on 
July 1 and August 1 

Annual water supply planning 
for the year done based on July 

1 or August 1 reservoir level 
estimates (depending on the 

reservoir). 

Floods Streamflow Seasonal 
Streamflow 
amount (in 
snowmelt 
season) 

% of average annual 
inflow for Apr-July 

Reservoir management. This 
metric is an input into some 
reservoir operations models. 

Water 
Supply 

Streamflow Inter-annual 
variability in 

summer 
streamflow 

10th, 50th and 90th 
percentile volumes of 
Apr-May-June-July 
sum, over several 

years 

Understanding range of 
possibilities while planning for 

water supply on timescales of 1 
or more years. 

Water 
Supply 

Streamflow Low-end 
Streamflow 

7-day 10 year low 
flows 

Water quality management 
(issuing discharge permits), and 

water supply planning during 
dry years (determining permit 
limits for water withdrawals). 

Water 
Supply 

Streamflow Low-end 
Streamflow 

Bottom 10th or 25th 
percentile volumes of 
streamflow (especially 

in dry years) 

Water supply planning during 
dry years (or droughts). 

Water 
Supply 

Streamflow Streamflow 
Timing 

Center of mass Water supply planning for time-
sensitive uses (crops, timed 
water diversions, water in 

ecosystems), and reservoir 
operations management. 
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Issue Hydroclimatic 
Phenomenon 

Aspect of 
Phenomenon 

Decision-relevant 
Metric 

Decision/Use 

Water 
Supply 

Streamflow Streamflow 
Timing 

Quartiles: Day on 
which 25%, 50%, and 
75% flow (beginning at 
start of water year) has 

passed 

Water supply planning for time-
sensitive uses (crops, timed 

water diversions, water 
ecosystems), and reservoir 
operations management. 

Floods Streamflow Peakflow Intensity Duration and 
Frequency curves for 
different flow events 

Storm water management & 
design, and flood protection. 

Floods Streamflow Variability of 
Streamflow 

Probabilities of 
exceedance for certain 

run-off thresholds 
(ASPE design 

thresholds, which vary 
by region and 

infrastructure type) 

Storm water management & 
design, and flood protection. 

Water 
Supply 

Snowpack Seasonal 
snowpack 

volume 

Monthly snow water 
equivalent: Total 
Water availability 

metric on a monthly 
scale. (especially Dec-

Jul) 

Understanding streamflow 
characteristics and the state of 

the water system - and its 
potential to meet demands. E.g. 
Winter months SWE (Dec-Jan-

Feb) is used in seasonal 
forecasting of reservoir levels 

on July 1. 

Water 
Supply 

Snowpack Seasonal 
snowpack 

volume 

% of annual snowpack 
accumulated in 
different months 

Seasonal reservoir in-flow 
forecasting and understanding 

expectations with regard to 
early versus late season snow 

accumulation. 

Water 
Supply 

Snowpack Annual cycle of 
snow 

accumulation 
and melt 

SWE triangle1 - Peak 
snow (amount and 

timing), and its 
relationship with 
average snow- 

accumulation and -
melt rates, and timing 

and length of 
accumulation and melt 

seasons 

On-stream reservoir 
management, and to 

understand future streamflow 
characteristics. Shape of the 

triangle helps better understand 
the changing dynamics of the 

snow season, and what to 
expect in terms of runoff timing 

and amounts. 
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Issue Hydroclimatic 
Phenomenon 

Aspect of 
Phenomenon 

Decision-relevant 
Metric 

Decision/Use 

Water 
Supply 

Snowpack Inter-annual 
Variability in 
Snowpack 

Deviations from 
historical mean in 

monthly SWE 

Water supply planning, 
especially for supply 

restrictions. 

Water 
Supply 

Snowpack Inter-annual 
Variability in 
Snowpack 

Upper and lower end 
of distribution: 10th and 

90th percentile of 
annual snowpack for 
wet and dry years (or 
top and bottom 25 pc) 

Water supply planning, 
especially for supply 

restrictions. 

Water 
Supply 

Droughts/Dry 
Spells 

Low 
precipitation 

Standardized 
Precipitation Index 

(SPI): Number of dry 
or wet years 

Drought planning and 
understanding dry spells. 

Water 
Supply 

Droughts/Dry 
Spell 

Net water 
availability 

SPEI (Standardised 
Precipitation-

Evapotranspiration 
Index) 

Drought planning and 
understanding dry spells. 

4. Key scientific activities and results from Hyperion 

From the above long list of decision-relevant metrics, project Hyperion’s managers and 

scientists collectively developed case study science plans that identified a shorter list of 

scientific activities and metrics that will be a focus of the project (Table A1 in the Appendix).  

Out of this long list of decision-relevant metrics, project Hyperion’s stakeholders and scientists 

collectively decided to focus on the following metrics and scientific activities, as outlined in the 

case study science plans. These key scientific activities are as follows: Snow Water Equivalent 

(SWE), North American Monsoons, and Water Supply. The rest of this section presents a 

narrative description of these three short-listed scientific activities. The key motivation, methods, 

results and limitations from each of the three scientific activities, are summarised below. 
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4.1. SWE triangle 

Summary 

● This work examines the skill of various climate model datasets, and analyses future 

projections for SWE triangle metrics.  

● Snow Water Equivalent (SWE) triangle uses a fitted triangle to characterize the annual 

cycle of snow accumulation and melt through six metrics of management relevance: 

peak water volume and timing, snow accumulation and melt rates, and the lengths of the 

accumulation and melt seasons (Rhoades et al. 2018).2 

● The study finds that models are better at representing the accumulation portion of the 

snow season than the melt season: snow melt rate being the most common failure mode 

across models. 

● Average peak SWE volume is expected to dramatically decline by the end of the 

century, with a general reduction in accumulation rate and accumulation season length. 

Interestingly, and surprisingly there is a lengthening of the melt season by the end of the 

century, due to the earlier start of the melt season.  

4.1.1.  Background and Methods 

Mountain snowpack is integral to water supply and security in the Western US and has wide 

ranging impacts on agricultural productivity, ecological function, hydroelectric power, and 

tourism.  Yet, the simple question of how much snow is in the mountains still can’t be easily 

answered. Although many techniques have been developed to produce snowpack estimates, 

there is very limited inter-comparison of these techniques, particularly for decision-relevant 

metrics that focus on water resource management. This has resulted in a large degree of 

uncertainty in both historical and future snowpack estimates, which has constrained both model 

development and decisions on water management based on climate change. A critical 

examination of the different observational and modeled snowpack datasets can provide a better 

understanding of the relative credibility of these datasets. Further, an analysis of future 

projections in relation to the relative skill of the different modeled datasets can provide a better 

understanding of the different uncertainties and reasons for these uncertainties in estimates of 

future snow predictions. In this way, the evaluation of snowpack can also act as a great litmus 

test for climate model performance as it requires appropriate representation of both temperature 

and precipitation, particularly with elevation. The key research questions addressed in this work 

are as follows: 

1. What are snowpack related metrics that are both decision-relevant for water 

resources management and tractable from a climate model development 

perspective?   

2. How well are different snowpack processes and SWE metrics represented across 

different snowpack datasets (both observed and modeled), and what is their 

relative credibility?   
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3. What do the different climate models say about snowpack decline in the future 

and does model choice, resolution, and boundary forcing, matter? Do these 

dynamically downscaled results differ from those derived from statistical 

downscaling methods? 

 

As decision-relevant SWE metrics, six simple snowpack metrics (known as the SWE triangle) 

(Refer to Figure A1 in the Appendix) were developed that linearize the major components of the 

snow season and can be easily applied across any gridded snow product. The goal of the SWE 

triangle metric framework was to find a middle ground between usefulness in evaluating model 

performance and distilling the management relevant points in the life cycle of snowpack. After 

identification of SWE metrics, an extensive intercomparison of publicly available snowpack 

products (that had data on daily snow water equivalent across at least 15-20 years) was 

conducted using a z-score analysis. The products that were evaluated included observationally 

constrained, model derived (i.e., bounded by atmospheric reanalysis and global climate model 

data), and statistically derived (i.e., observations update global climate model results) datasets. 

A detailed description of the products examined are provided in Appendix 1 - Table A2. 

Particular focus was also provided on evaluating SWE triangle metrics for snow products in 

regions that are more relevant to water resource management (e.g., upstream regions of major 

reservoirs and/or regions central to water conveyance networks; Refer to Figure A2 in the 

Appendix). If a Z score is 0, the data set mean is exactly the same as the observed Sierra 

Nevada Snow Reanalysis (SNSR) data, and if the Z score is positive (negative) the data set 

mean is higher (lower) than SNSR. If a Z score falls outside of the range of 2 to −2 the given 

data set's mean is substantially different than the observed. 

4.1.2. Key results 

Figure 2 (and Figures A3 and A4) provides detailed skill scores for the different observational 

and modeled snow datasets, for decision-relevant SWE triangle metrics including Snowpack 

accumulation rate (SAR), Total water volume at peak accumulation (TWV), SWE peak 

accumulation date (SPD), Snowpack melt rate (SMR), length of the accumulation season (AS), 

and length of the melt season (MS). In CO, we found that the observationally constrained snow 

products were in agreement with each other. This was interesting considering that in CA, there 

was a 2x difference in peak SWE volume among some of the observational products. Overall, in 

CO there was a general agreement across the observationally constrained snow products, and 

regions, for peak SWE timing and accumulation and melt season length. Model products that 

were bounded by atmospheric reanalysis data were generally low biased, for all SWE triangle 

metrics, highlighting the major role that atmospheric boundary conditions play in the simulation 

of snowpack. SWE triangle metric performance and interannual variability in SWE is much more 

varied when assessing model products bounded by global climate model data. In general, 

across model products and regions, the snow melt rate was too fast.  

Across all regions assessed, a high-emissions scenario results in a large decline in average 

peak SWE volume by the end of the century (Figure 3).  There is a general reduction in both 

accumulation rate and accumulation season length, likely due to changes in precipitation phase 

from snowfall to rainfall as a result of changes in surface temperature. Melt season length 
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shows a general lengthening, which likely related to the interaction between the average 

elevation and surface temperature of the region assessed (number of days at or below freezing) 

and an earlier peak SWE timing (shorter days lead to less available energy to melt the snow). It 

is to be noted that for the future projections, an ensemble of the evaluated models were used 

and no skill-based model weighting was conducted.  

 

 
Figure 2: Z scores for SWE triangle metrics for the Lake Powell region  
Z scores for the six SWE triangle metrics evaluated for the Lake Powell upstream analysis region. The metrics 

include snowpack accumulation rate (SAR), total water volume at peak accumulation (TWV), snowpack peak 

accumulation date (SPD), snowpack melt rate (SMR), the length of the accumulation season (AS), and the length of 

the melt season (MS). The Z score is computed by using the mean and standard deviation from SNSR. Red (blue) 

indicates positive (negative) Z score bias, and saturation indicates the magnitude of bias. Text color is used to 

distinguish resolution in (b) and global climate model forcing data set in (c). SWE = snow water equivalent. 
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Figure 3: Snow water equivalent triangle metrics for key watershed regions in Colorado 
Color is used to distinguish 1985–2005 (white), 2039–2059 (orange), and 2079–2099 (red).  Future conditions in 

these simulations assume a high-emission scenario (or RCP8.5). For Peak Water Volume the top x axis is used for 

individual regions and the bottom x axis is used for aggregate regions. MAF = million acre‐feet. 

4.1.3. Discussion and Conclusions 

Identifying exactly how much snowpack is in the mountains is a messy business given its multi-

scale dependencies. In general, models appear to better represent the accumulation portion of 

the snow season than the melt season.  In particular, snow melt rate appears to be the most 

common failure mode across models, with melt rates generally too fast. Snow melt rate issues 

may be model resolution dependent, as this study sampled an uneven number of simulations 

from 50 km (8 simulations), 25 km (5 simulations), and 12 km (2 simulations).  Further research 

is needed to explore this thoroughly, particularly through filling in gaps in the simulation matrix 

(e.g., use more atmospheric reanalysis boundary forcings and more cross-resolution 

simulations) produced by important coordinated regional downscaling efforts such as the North 

American Coordinated Regional Downscaling Experiment (NA-CORDEX).  In addition, a 

framework to isolate the relative contributions of snowpack simulation error associated with 

inaccuracies in precipitation, surface temperature, topography, etc. was developed for 

California.3 This framework could be used in Colorado as well and enables model developers to 

better isolate cause and effect in model bias and inform stakeholders on why a given model got 

the right/wrong answer for the right/wrong reasons.  Although not done here, the combination of 

the aforementioned methods (i.e., Rhoades et al., 2018 and Xu et al., 2019) can be used to 

understand the confidence in model sub-selection or model weighting for the region. Until a 

more detailed model sub-selection analysis is available, this multi-metric, multi-dataset SWE 

triangle evaluation framework samples across many different datasets and uses an ensemble of 

models rather than choosing a specific skill-based subset. More research is needed on different 

ways to use the skill evaluation results to inform future projections.  
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Overall, snowpack is highly sensitive to surface temperature (and its impact on precipitation 

phasing) and most climate reports are virtually certain that surface temperatures have and will 

continue to increase heading into the next century. Hence, there is reasonable confidence in 

these projected changes in peak SWE volume by mid- and end-of-century, if the high emission 

scenario comes to fruition. 

4.2. North American Monsoons (NAMS) 

Summary 

● This study examines the uncertainty within different observational datasets for the timing 

of NAMS. It also evaluates how well CMIP5 and CORDEX models predict NAMS timing.  

● Different observational datasets differ by about a week or so, on average for onset dates 

for NAMS.  

● Individual models may have large biases in their simulation of onset dates. In the overall 

ensemble of models (both CMIP5 and CORDX), onset occurs earlier in the southern part 

and later in the northern part.  

● Higher resolution did not lead to smaller biases in onset calculations. 

4.2.1.  Background and Methods 

The North American Monsoon or NAMS contributes to over 30% of annual precipitation in the 

U.S. Southwest, and more than 40-50% in central and northwestern Mexico. The monsoon is 

important for the agricultural and the fire seasons (as it typically marks the end of fire season). 

However, there is limited understanding of the timing of the NAMS. These limitations extend 

both to the observations of NAMS as well as to the climate models that predict NAMS. This is 

because there are not many credible monsoon timing algorithms or metrics that can be applied 

to both observational data sets and models. This means that there is not enough understanding 

of the observational uncertainty of the NAMS timing. For example, the National Weather Service 

considers onset to occur after three consecutive days of daily average dewpoint temperature 

above a threshold. However, if models display a substantial bias, such metrics based on 

absolute values will not accurately depict onset. Further, there is limited knowledge about how 

well models represent the NAMS timing. It is hypothesized that, because of the importance of 

the Gulf of California and the Sierra Madre Occidental to NAMS formation, models with higher 

horizontal resolution (finer grid spacing) should better simulate the NAMS and its timing. 

However, this hypothesis has not been tested. Therefore, this study asks the following 

questions: 

1. What is the observational uncertainty of North American monsoon (NAMS) onset 

and how does it compare to the CMIP5 and CORDEX model spread? (This is done 

by developing monsoon timing metrics that can be applied to both observational 

data sets and models) 

2. How well do models represent NAMS timing? 
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For the observational analysis, daily precipitation data from three observational datasets and 

two reanalyses for the years 1981-2016 were collected. These were from Climate Prediction 

Center (CPC), Global Precipitation Climatology Center (GPCC), Tropical Rainfall Measuring 

Mission (TRMM) (data starts in 1998), NCEP North American Regional Reanalysis (NARR), and 

the ECMWF ERA-Interim Reanalysis (ERAI). For the model evaluations, daily precipitation data 

from 12 models of the Coupled Model Intercomparison Project version 5 (CMIP5) data set 

(historical (1985-2004) and RCP 8.5 (2041-2060 and 2080-2099) was examined. In addition, 

select CORDEX models forced by ERA-Interim (1989-2008) with ~50 km and ~25 km was 

examined. Two NAMS timing calculation methods were used: 

● The Liebmann et al. (2008)4 method (modified) computes onset by summing the daily 

precipitation anomaly from the long-term annual daily mean precipitation, beginning 

during the dry season (the month with the lowest precipitation during the annual cycle at 

that grid cell). The date on which this sum is a minimum is the date of onset, while the 

date of the maximum sum marks the rainy season withdrawal (when the monsoon rains 

end). This method is both objective and defined locally, that is, based on the climate of 

the area of interest. Onset must occur by October 27. However, the date of onset can 

vary slightly depending on the start date of the summation. 

● The Grantz et al. (2007) method5 (modified) computes the day on which the daily 

precipitation reaches 10% of the monsoon precipitation (count begins on May 1st).  

4.2.2. Key results 

The Liebmann et al. (2008) and Grantz et al. (2007) onset methods produce similar average 

onset days in the southern and central NAMS region, but in the northern monsoon region the 

Liebmann method has onset occurring later, whereas the Grantz method has earlier onsets at 

higher latitudes. Figure 4 (left) shows that observed uncertainty (from Liebmann method) in 

monsoon dates is typically about a week or so between data sets compared to a mean of the 

three purely observation-based datasets (TRMM, CPC, and GPCC). NARR is similar to the 

other observational data sets while ERA-Interim has an early onset in the southern and central 

parts of the monsoon and later onset in the northern reaches of the monsoon region. The ERA-

Interim behavior is similar to CMIP5. Onset dates vary more than withdrawal dates (the date on 

which the monsoon rains end, shown on the right); onset occurs gradually from south to north, 

whereas monsoon withdrawal happens more suddenly across all latitudes of the NAMS region. 

Interannual variability is higher in onset than withdrawal (not shown). 
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Figure 4: Biases in onset and withdrawal dates of NAMs in observed datasets 
Biases in onset (left) and withdrawal (right) dates calculated using the Liebmann method, compared to a mean of 

three observed data sets (CPC, GPCC, and TRMM) for three different observed data sets and two reanalyses. The 

dates are shown for a transect progressing from south to north, as well as for the two US states of Arizona and New 

Mexico. Latitude or state is shown on the left, and different data sets are shown on the bottom. Warm colors indicate 

that the data set shows a later date than observed, and cool colors indicate an earlier date than observed. The biases 

are small for the three observed data sets and the NARR (about a week for onset), but the ERA-Interim reanalysis 

shows a substantially later onset and withdrawal than the observations. Differences in onset are larger because onset 

occurs gradually throughout the monsoon region, progressing from south to north, whereas monsoon withdrawal 

tends to occur all at once across the region. 

 

Figure 5 shows that the historical CMIP5 simulations simulate an early onset in the southern 

monsoon region and a late monsoon onset in the northern region (similar to ERA-Interim). The 

CMIP5 model spread is much wider than the observational spread. Figure 6 shows that the 

ERA-Interim-driven CORDEX runs also (for the most part) indicate an early onset in the south 

and a late onset in the north. The regional models seem to retain the biases from the ERA-

Interim. Despite their finer horizontal resolution, the CORDEX models have larger biases in 

onset date compared to the CMIP5 models. This was unexpected due to the use of “perfect” 

reanalysis boundary conditions and the higher horizontal grid spacing, which allows the models 

to have a better representation of the Gulf of California and the Sierra Madre Occidental. 

Regional models inherit biases from their boundary conditions. Typically, reanalysis offers 

“perfect” boundary conditions that are as close to observations as one can get in a three-

dimensional consistent, gridded framework. Using reanalysis as boundary conditions therefore 

gives us an idea of the overall skill of the regional climate model.  

In terms of future projections, there are very small changes in calculated onset date in the future 

CMIP5 simulations, but these differences are smaller than the model spread. The large errors 
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make it difficult for future scenarios to have any credibility when it comes to changes in NAMS 

onset timing. 

 

 
Figure 5: Biases in onset and withdrawal dates of NAMs in CMIP5 models 
Biases in onset (left) and withdrawal (right) dates calculated using the Liebmann method, compared to a mean of 

three observed data sets (CPC, GPCC, and TRMM) for 12 different CMIP5 models.  The dates are shown for a 

transect progressing from south to north, as well as for the two US states of Arizona and New Mexico. Latitude or 

state is shown on the left, and different data sets are shown on the bottom. Warm colors indicate that data set shows 

a later date than observed, and cool colors indicate an earlier date than observed. The models tend to simulate an 

early monsoon in the southern monsoon region, and a late monsoon in the northern region. Thus, it takes too long for 

the monsoon to penetrate into the northern part of the region. Withdrawal is also late in the northern part of the 

monsoon region, although the bias is smaller than the onset date, resulting in a shorter-than-observed monsoon.  
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Figure 6:  Biases in onset and withdrawal dates of NAMs in CORDEX models 
Biases in onset (left) and withdrawal (right) dates calculated using the Liebmann method, compared to a mean of 

three observed data sets (CPC, GPCC, and TRMM) for 11 different CORDEX regional models.  The dates are shown 

for a transect progressing from south to north, as well as for the two US states of Arizona and New Mexico. Latitude 

or state is shown on the left, and different data sets are shown on the bottom. Warm colors indicate that the data set 

shows a later date than observed, and cool colors indicate an earlier date than observed. The regional models 

behave somewhat similarly to the global models, although there is more variability amongst the models. The biases 

are still fairly large, however, so increased resolution does not seem to improve the simulation of monsoon timing.   

4.2.3. Discussion and Conclusions 

Overall, different observation datasets differ by about a week or so on average, for onset dates. 

Individual models may have large biases in their simulation of onset dates. In fact, observational 

uncertainty is much smaller than the CMIP5 and CORDEX model spreads. Models simulate an 

annual cycle with a summer peak in precipitation that is lower than observed. In the overall 

ensemble of models, onset occurs earlier in the southern part and later in the northern part. 

Particularly in the northern part of the monsoon region, the onset occurs later by more than a 

month on average, in some models. This occurs in both the global and regional models, as well 

as the ERA-Interim reanalysis.  

 

The tendency for the models and ERA-Interim to have early onset in the south and late onset in 

the north needs to be explored to understand the reason for this happening. In the case of 

regional models, the bias could be due to the boundary forcing. The regional model result is 

disappointing as they are often expected to do a better job with monsoon timing than the global 

models. It is seen that finer horizontal grid spacing (even with “perfect” boundary conditions 

from reanalysis) does not lead to smaller biases in onset calculations, thereby countering the 

“higher resolution is always better” narrative. Many of the regional or global NAMS simulations 
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lack a Gulf of California, which therefore limits how well they can represent gulf surges which 

are often critical to monsoon onset and wet phases, which represents a key gap. But higher 

resolution does not seem to help. More work is needed to understand whether this is due to the 

boundary conditions, or some other reason. Understanding what forcing (e.g. MJO, Gulf surges, 

soil moisture, snow cover) causes changes in monsoon timing should help elucidate model 

issues. 

4.3. Decadal water supply 

Summary 

● The study examines whether a credible technique for decadal forecast of the Colorado 

River water supply can be developed. The study also tests an earth system model’s 

capability in predicting the total soil water and whether it tracks the Colorado River’s 

water supply. 

● A statistical method in predicting the Colorado River’s water supply out to 10 years was 

developed. 

● Overall the results show that predicting the Colorado River’s water supply up to 10 years 

is possible, supported by skillful prediction of the Great Salt Lake level that shares a high 

level of coherence with the Colorado River’s water supply. 

4.3.1.  Background and Methods 

Multi-year droughts impact water management in and around the Colorado River. Therefore, 

being able to predict the water supply for the next 5-10 years is critical. However, there are not 

many such decadal projections. It is hypothesized that based on the known climate cycle and 

the low-frequency variability of water storage in the Intermountain Region, decadal prediction for 

water supply is feasible. This hypothesis is based on prior studies from this team, which has 

developed forecasting techniques to predict the lake levels of the Great Salt Lake. These 

forecasting techniques have demonstrably been able to predict the Great Salt Lake’s low-

frequency fluctuation since 2009. The studies also showed that the Great Salt Lake (GSL) can 

be a proxy for depicting the Colorado water supply. Therefore, this study asks the question: 

1. Taking guidance from the Great Salt Lake forecasting techniques, can a credible 

technique for “decadal forecast” for the Colorado River water supply be 

developed? The study also tests an earth system model’s capability in predicting 

the total soil water and whether it tracks the Colorado water supply.   

In order to conduct this work, water storage and water supply, consisting of all liquid water 

above bedrock (groundwater, soil moisture, streamflow, reservoirs etc.) were examined from 

many datasets. A statistical model that was developed based on regressive methods and the 

GSL water level data, could predict the Colorado water supply. The skill of GCM CESMv1, in 

addition to many reanalysis and hydrological datasets of decadal prediction for Colorado water 

supply were also examined. An annual timescale and Intermountain region domain (Great Basin 

and Colorado Basins) were considered, to examine the change in water storage/supply of the 
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Colorado River. In addition to water supply prediction, this work is being expanded through a 

collaboration with Prof. Yoshi Chikamoto (USU) and Ruby Leung (PNNL) who are working to 

provide a streamflow forecast utilizing the CESM model output. 

4.3.2. Key results 

A statistical method in predicting the Colorado water supply out to 10 years was developed 

(Refer lower-panel graph in Figure 7, Plucinski et al., 2019).6 Figure 7 further confirms that the 

two time series i.e. the Great Salt Lake on top and the smoothed water supply in the bottom, 

track each other nicely. Their forecasts are agreeable, suggesting an upturn around 2020. 

Although it is observed that the winter snowpack is much above normal and the river flow 

should respond to it, the models predicted this upturn 5 years earlier. Predictions from the 

model show that Colorado water supply did not go up as the projections from a 2012 Bureau of 

Reclamation's (BOR) report shows, but rather, went down and will go up by 2020. This multi-

year upturn and downturn was not revealed by the CMIP5-derived projection but is depicted by 

the decadal forecast. 

As a next important step, the study evaluated a climate model “dynamical” forecast. Figure 8 

shows that VR-CESM appears to predict the upturn in total soil water in the Colorado Basin, 

consistent with the statistical forecast.  Overall, the statistical model developed is able to 

simulate the surface and subsurface features, though the model does not perform well in 

representing atmospheric teleconnection leading to shifted jet stream and/or storm tracks. 

Therefore, model prediction might not be able to represent the year-to-year variation. 

4.3.3. Discussion and Conclusions 

This study shows that predicting the Colorado water supply up to 10 years is possible, 

supported by skillful prediction of the Great Salt Lake level that shares a high level of coherence 

with the Colorado water supply. Water supply is an integrated metric and modeling the decadal 

variability (like the Bureau of Reclamation does) allows for multi-year prediction of water supply 

which can potentially be applied to other regions. Further engagement in data assimilation 

techniques can help to enable such decadal predictions. Future research needs to integrate 

hydrological models with climate models while also working on increasing climate models’ 

resolution. 
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Figure 7: Dynamical model forecast of GSL versus statistical model forecast of Colorado Water Supply 
Time-series of Dynamical model forecast of Great Salt Lake (GSL) level (upper panel) and observed values (black 

line) with statistical models forecast (blue and red) of Colorado Water Supply (lower panel). The black line in lower 

panel is from the Bureau of Reclamation (BOR) report that released a comprehensive Colorado River basin water 

supply and demand study in 2013.  
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Figure 8: Total Soil Water in Colorado Basin 
Time-series of total soil water (solid orange) with 95% confidence bounds (dashed orange) in the Colorado Basin with 

values in left y-axis. Similarly, right y-axis shows the time-series of Colorado River water supply from observation 

(black dots) and from statistical model prediction (black line). Blue lines (solid average and dashed 95% confidence 

bounds) show the VR-CESM prediction of total soil water in the Colorado Basin. Since total soil water of the Colorado 

River Basin tracks the Colorado water supply, soil water from dynamical model can be used to predict the Colorado 

water supply. 
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Appendix 1 

Table A1:  List of metrics and summary of scientific activities pursued by Hyperion project 

S No. Science Activity Lead Scientists  Description of Research & Papers/Conference 
Abstracts based on the work 

1.  Observational 
uncertainties and 
model skill for 
predicting North 
American Monsoon 
timings 

Sara Rauscher This study examines the uncertainty within different 
observational datasets for the timing of NAMS. It 
also evaluates how well CMIP5 and CORDEX 
models predict the NAMS timing.  
Different observational datasets differ by about a 
week or so, on average for onset dates for NAMS. 
Individual models may have large biases in their 
simulation of onset dates. In the overall ensemble 
of models (both CMIP5 and CORDX), onset occurs 
earlier in the southern part and later in the northern 
part. Higher resolution did not lead to smaller 
biases in onset calculations. 
 
Papers: 
● Yadav, P., S. A. Rauscher, and D. E. Veron 

(2019) The Influence of the Madden-Julian 
Oscillation on the North American Monsoon 
onset and its variability. 
https://agu.confex.com/agu/fm19/meetingapp.c
gi/Paper/598454 

● Yadav, P., S. A. Rauscher, and D. E. Veron 
(2019) The Influence of the Madden-Julian 
Oscillation on the North American Monsoon 
onset and its variability. Manuscript in 
preparation. 

● Rauscher, S. A., P. Yadav, D. E. Veron, E. 
Aiken, and E. Hoeflich (2019) How well do 
models simulate the timing of the North 
American Monsoon? Manuscript in preparation. 

2.  Snow Water 
Equivalent (SWE) 
triangle: Model skill 
and future 
projections 

Alan Rhoades This work examines the skill of various climate 
model datasets, and analyses future projections for 
SWE triangle metrics.  
The study finds that models are better at 
representing the accumulation portion of the snow 
season than the melt season: snow melt rate being 
the most common failure mode across models. 
Average peak SWE volume is expected to 
dramatically decline by the end of the century, with 
a general reduction in accumulation rate, 
accumulation season length. Interestingly, and 
surprisingly there is a lengthening of the melt 
season by the end of the century due to the earlier 
start to the melt season.  

3.  Decadal variability 
and predictability in 
water supply 

Simon Wang The study examines whether a credible technique 
for decadal forecast of the Colorado River water 
supply be developed. The study also tests an earth 

https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/598454
https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/598454
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S No. Science Activity Lead Scientists  Description of Research & Papers/Conference 
Abstracts based on the work 

system model’s capability in predicting the total soil 
water and whether it tracks the Colorado water 
supply.  A statistical method in predicting the 
Colorado water supply out to 10 years was 
developed. Overall the results show that predicting 
the Colorado water supply up to 10 years is 
possible, supported by skillful prediction of the 
Great Salt Lake level that shares a high level of 
coherence with the Colorado water supply. 
 
Papers: 
● Wang, S.-Y., R. R. Gillies, O.-Y. Chung, and C. 

Shen, 2018: Cross-Basin Decadal Climate 
Regime connecting the Colorado River and the 
Great Salt Lake. Journal of Hydrometeorology, 
DOI:10.1175/JHM-D-17-0081.1 

● Plucinski, B., Y. Sun, S.-Y.  Wang, R. R. Gillies, 
J. Eklund, and C.-C. Wang, 2019: Feasibility of 
Multi-Year Forecast for the Colorado River 
Water Supply: Time Series Modeling. Water, 
DOI:10.3390/w11122433 (this paper is co-
authored with one of our water managers - 
James Eklund) 

● Chikamoto et al., 2019: Assessing the multi-year 
predictability of Colorado River water supply 
using a drift-free decadal climate prediction 
system. In preparation. 

4.  Variable resolution 
domain sensitivity 
experiments 

Alan Rhoades Variable-resolution global climate models are a new 
means by which to provide dynamically downscaled 
climate data and are currently being vetted for 
resolution, refinement domain size, and 
parameterization-based sensitivities. This study 
assesses the role of refinement domain size over 
the North Pacific Ocean, particularly longitudinal 
extent, in shaping variable-resolution in the 
Community Earth System Model (VR-CESM) 
simulations of winter (DJF) hydroclimate of the 
western U.S. through modifications in dynamical 
and/or thermodynamical drivers. The study finds 
that there is minimal impact of refinement domain 
size on model fidelity in representing western U.S. 
hydroclimate and show that topographic resolution 
and land-surface model choice have a greater 
influence. 
 
Papers: 

● AGU2018 abstract: 
https://ui.adsabs.harvard.edu/abs/2018AGUF
M.A23N3111R/abstract 

● Rhoades, Alan M., et al. "Influences of North 
Pacific Ocean Domain Extent on the Western 

https://ui.adsabs.harvard.edu/abs/2018AGUFM.A23N3111R/abstract
https://ui.adsabs.harvard.edu/abs/2018AGUFM.A23N3111R/abstract
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S No. Science Activity Lead Scientists  Description of Research & Papers/Conference 
Abstracts based on the work 

US Winter Hydroclimatology in Variable‐
Resolution CESM." Journal of Geophysical 
Research: Atmospheres 125.14 (2020): 
e2019JD031977. 

 
Table A2: List of datasets evaluated for SWE triangle metrics  

Downscaling 

method 

Dataset name Product summary Resolution 

(evaluated at 

12km) 

Time 

period(s) 

assessed 

Observationally 

constrained 

snow products 

Livneh, 2015 (L15) 

(reference dataset  

for all regions) 

In-situ observations, NCEP 

reanalysis meteorological 

data, MT-CLIM based spatial 

interpolation, and bounded 

simulations of VIC land-

surface model.  Estimates 

updated with PRISM 

normals. 

6km – 1 product 1985-2005 

 North American Land 

Data Assimilation 

System, phase 2 

(NLDAS-2) 

Land-surface models 

bounded by NCEP reanalysis 

meteorological data 

14km – 2 products 1985-2005 

Dynamical 

Downscaling 

North American 

Coordinated Regional 

Climate Downscaling 

Experiment (NA-

CORDEX) 

Five regional climate models 

bounded by ERA-interim 

atmospheric reanalysis data. 

50km – 3 products 

25km – 3 products 

12km – 2 products 

1985-2005 

 NA-CORDEX Six regional climate models 

bounded by five global 

climate model datasets. 

50km – 7 products 

25km – 2 products 

1985-2005 

2039-2059 

2079-2099 

Variable-

Resolution 

Global Climate 

Model 

Variable-Resolution in 

the Community Earth 

System Model (VR-

CESM) 

Global climate model 

simulation (atmosphere-land 

coupling) with monthly 

prescribed sea-ice and sea-

surface temperatures. 

50km – 1 product 

25km – 3 products 

12km – 1 product 

6km – 1 product 

1985-2005 

2000-2015 
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Figure A1: Snow water equivalent (SWE) triangle metrics. 
The six snow water equivalent (SWE) triangle metrics visually represented and overlaid on top of the observationally 

constrained Livneh, 2015 dataset historical average snowpack life cycle for the California Sierra Nevada. 

 

 
Figure A2: The Colorado regions that are relevant to water management operations and that were used to 
evaluate SWE datasets. 

 



27 

 
Figure A3:  Z scores for SWE triangle metrics for the Shoshone watershed  
Z scores for the six SWE triangle metrics evaluated for the Shoshone region. The metrics include snowpack 

accumulation rate (SAR), total water volume at peak accumulation (TWV), snowpack peak accumulation date (SPD), 

snowpack melt rate (SMR), the length of the accumulation season (AS), and the length of the melt season (MS). The 

Z score is computed by using the mean and standard deviation from SNSR. Red (blue) indicates positive (negative) Z 

score bias, and saturation indicates the magnitude of bias. Text color is used to distinguish resolution in (b) and 

global climate model forcing data set in (c). SWE = snow water equivalent. 
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Figure A4:  Z scores for SWE triangle metrics for the Gunnison River and Blue Mesa watershed 
Z scores for the six SWE triangle metrics evaluated for the Gunnison River and Blue Mesa watersheds. The metrics 

include snowpack accumulation rate (SAR), total water volume at peak accumulation (TWV), snowpack peak 

accumulation date (SPD), snowpack melt rate (SMR), the length of the accumulation season (AS), and the length of 

the melt season (MS). The Z score is computed by using the mean and standard deviation from SNSR. Red (blue) 

indicates positive (negative) Z score bias, and saturation indicates the magnitude of bias. Text color is used to 

distinguish resolution in (b) and global climate model forcing data set in (c). SWE = snow water equivalent. 
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