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Introduction 
This narrative case study report is a synthesis of key discussions and preliminary scientific 
results for the South Florida region, undertaken as part of the Hyperion project (2016-19). 
Project Hyperion (now continuing as the HyperFACETS project) is a basic science project that 
aims to advance climate modelling by evaluating regional climate datasets for decision-relevant 
metrics. While there has been an explosive growth in the number of regional climate datasets 
available to users, there is limited understanding of the credibility and suitability of these 
datasets for use in different management decisions. Hyperion aims to address this need by 
developing comprehensive assessment capabilities to evaluate the credibility of regional climate 
datasets, understand the processes that contribute to model biases, and improve the ability of 
models to predict management relevant outcomes.  

Since decision-relevance is a core motivation for the project, Hyperion is designed on the 
principles of co-production. The project brings together scientists from nine research institutions 
and managers from twelve water agencies in four watersheds: Sacramento/San Joaquin, 
Colorado Headwaters, South Florida, and Susquehanna. The project structure explicitly allows 
for both the groups to co-develop the science plan and research questions, in addition to co-
producing the science itself. The scientists include atmospheric and earth system scientists as 
well as hydrologists. The water managers, depending on the agency, have functions including 
planning, operating and managing water quality, water supply, stormwater management, flood 
control, and water infrastructure design.       

This narrative report provides an overview of the co-production process in Hyperion (Chapter 1), 
the regional hydro-climatic context and challenges (Chapter 2), broad climate information needs 
of water management agencies (Chapter 3), and short summaries of the key scientific activities 
undertaken for the region (Chapter 4). This information is based on the project’s co-production 
engagements and preliminary scientific results. Some of these preliminary results may be 
updated or refined as they go through the peer-review process. While this report is based on the 
perspectives of water management agencies that were part of Hyperion, we hope that the  
insights and methodologies that were developed are broadly applicable to other agencies in the 
region as well. 
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1. Co-production in Hyperion 
In Hyperion, as far as possible, the research questions, approaches and results were co-
produced through regular structured and unstructured engagements between scientists and 
managers (Figure 1). Structured engagement methods included workshops, remote and in-
person focus-group discussions, and quarterly project update calls. There were also continual 
less-structured, informal conversations over telephone calls and emails.  

 

 

 

 

 

 

 

 

 

Figure 1:Co-production process and timeline  
Summarizes key engagement activities along with important outcomes at each stage (depicted by the blue document 
icon). ‘Sci’ refers to Scientists, ‘WM’ refers to Water Manager and ‘HC ph.’ refers to Hydroclimatic Phenomena. 
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2. Regional hydro-climatic context & challenges  
The South Florida region is generally considered the region south of the Orlando Florida area, 
and includes the heavily populated south-eastern coastal counties of Dade, Broward, and Palm 
Beach and their municipalities such as Miami, Fort Lauderdale, West Palm, Tampa Bay and 
Fort Myers metropolitan areas on the Gulf Coast. The region has a population of  more than 9 
million people and is rapidly growing. It is home to the Florida Everglades, one of the most 
diverse ecosystems in the world, and includes over 3 million acres of agriculture that has 
undergone centuries of transformation. The area also contains substantial high value coastal 
infrastructure. There are a few large restoration projects being undertaken to address growing 
urban and agricultural water needs that also seek environmental protection and restoration. 
Flood protection, water supply, sea-level rise, maintaining natural systems and water quality, 
are some of the key water management priorities of the region.  

Overall, the key challenge for the region is balancing the quantity, quality, timing and distribution 
of water for an increasing urban population, restoration of natural systems especially around the 
Kissimmee River, and the Florida Everglades, and protecting water quality from both nonpoint 
and point sources. Sea level rise and flooding are critical climate related threats. High intensity 
rainfall events are also a related risk. With increasing temperatures, managing extreme heat 
events and maintaining water supply for all sectors are becoming important issues. Saltwater 
intrusion into surface and groundwater systems are also a matter of concern.  

Climate and hydrological data are used in some infrastructure plans and operations 
management such as in asset management and 50-year capital improvement plans. Regional 
and integrated hydrologic and hydraulic modelling activities are being undertaken, that include 
detailed descriptions of surface water, groundwater, and the intricacies of the infrastructure 
used to control their interaction.  As most of the southeast region is only slightly elevated above 
sea-level, water is tightly controlled through the canals, gates, pumps, and locks to control the 
flow and movement of water, particularly storm-flows, as it interacts with the natural, built, and 
coastal environments. Land use assessments and plans also consider climate, hydrological 
data, geographic data, urban footprints, and infrastructure location, and in several places such 
as the greater Miami region, sea-level rise and saltwater intrusion, are also considered.   

On the west coast that includes the greater Tampa Bay region, the area has historically relied 
on groundwater pumping for the overwhelming majority of its water supply needs. 
Environmental issues like saltwater intrusion and over-pumping triggered a long series of 
changes in the region, and now Tampa Bay Water, formed in 1998 as a regional supply agency, 
has built a mixed portfolio of water supply to meet regional demand. Over the past 20 years, the 
agency has built an integrated water supply system which includes a surface water system, 
groundwater wells, and a seawater desalination plant. This has enabled the agency to shift from 
being 100 percent reliant on groundwater to a mix of sources with an increasing reliance on 
surface waters.  Ongoing efforts at Tampa Bay Water aim to address potential impact of 
changing climate on its water supply system.  
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High-resolution rainfall and ET information (such as gridded, daily data) are currently not 
available. The level of uncertainty and lack of skill in future projections are also important 
information gaps. For instance, information on the combined impacts of floods, storm surges 
and sea level rise need to be developed, e.g. IDF curves (intensity, duration and frequency) for 
future scenarios. Climate change information needs to be more effectively incorporated in future 
infrastructure planning and design. Further, understanding of integrated risk management, 
including insurance and reinsurance needs, is also required. Overall, a vision for effective & 
dynamic adaptation would need to be developed.  

3. Climate information needs for water management 

3.1. Overview 
Flooding and water supply are two key issues for South Florida. A lot of planning relies on 
extreme precipitation metrics, and runoff/flow related metrics. In addition, certain drought or dry 
spell metrics are also of interest for water supply planning. Several of the metrics suggested by 
the stakeholders were on sub-seasonal (daily/weekly) time scales and skill of the models in 
capturing such short time periods can be an issue. In terms of water supply, Tampa Bay was 
particularly interested in summer rainfall which provides 60-70 percent of the region’s water. 
They were particularly interested in changes in the timing or duration or start date of the 
summer rainfall, say 20 or 30 years from now.  

In addition to the decision-relevant metrics, the managers also showed interest in certain 
‘upstream metrics’ and questions about drivers of events, particularly as they relate to 
hurricanes/storms and their characteristics going into the future. There was also interest in 
better understanding the modes of multi-decadal variability in the region, and how models are 
able to represent these modes. Further, the managers also wanted to understand whether there 
is a change to be expected in these multi-decadal modes, in the future and how that would 
impact local scale meteorological phenomena. 

Climate change projections for 2030 or 2060, up to the end of the century were stated as useful 
time scales. In terms of spatial scale, currently there is a focus on point location-based 
estimates (different rain gauges or weather stations placed across different basins) and using 
an area extrapolation from those estimates. But, stakeholders showed interest in basin scale 
average values as well.  

3.2. List of decision-relevant metrics and their importance 
In order for science to be actionable, resource managers need information on decision-relevant 
climatic metrics. Therefore, one of the first goals of Hyperion was to co-produce the decision-
relevant metrics for different management decisions in each of the case study regions. From the 
water managers’ perspective, such metrics quantitatively describe climatic phenomena that are 
directly related to practical management problems; changes in these quantities would 
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necessitate shifts in water infrastructure planning and operations. From the scientists’ 
perspective, these metrics can be used to test model fidelity for decision-relevant phenomena 
and hence push model development and scientific inquiry in more use-inspired directions. Table 
1 represents the decision relevant metrics, along with their potential importance, that were 
developed through iterative engagements between Dec 2016 to Nov 2017. This table is referred 
from the published journal article titled “The making of a metric: Co-producing decision-relevant 
climate science” by Jagannathan, Jones and Ray.1 

Table 1: Examples of decision-relevant metrics for each region. 
The table highlights management issues, hydroclimatic phenomena, aspect of phenomena and then each decision-
relevant metric. The last column also describes some of the potential decisions or uses for these metrics that were 
identified by the case study water managers. 

Issue Hydroclimatic 
Phenomenon 

Aspect of 
Phenomenon 

Decision-relevant 
Metric 

Decision/Use 

Floods Streamflow Peakflow  Multi-year probability 
distribution of 
instantaneous 

maximum flow on an 
annual scale. i.e. 
Annual Maxima 

Flood management and 
planning. 

Floods Streamflow Peakflow  Timing of annual 
maxima 

Flood management and 
planning. 

Floods Streamflow Peakflow  5-year 1-hour volume, 
5-year 1-day volume, 

10-year 3-day 
volume, 25-year 3-

day volume, 100-year 
3-day volume 

Stormwater infrastructure 
design criteria (for different 
infrastructure), and flood 
management, especially 

planning water storage facilities. 

Water 
Supply 

Streamflow Low-end 
Streamflow  

7-day 10 year low 
flow (7Q10) 

Water supply planning, 
especially water quality for dry 
years, and drought planning. 

Water 
Supply 

Streamflow Low-end 
Streamflow  

Flow anomalies at 
monthly timescales 

Water supply planning to 
calculate potential water 
shortages, and drought 

monitoring. 

Water 
Supply 

Streamflow Annual/Monthly 
flow  

Average Monthly or 
Annual Flow volumes 

Water supply planning for 
restoration activities. 

 
1 Jagannathan, K., A. D. Jones, and I. Ray, The making of a metric: Co-producing decision-relevant climate 
science. Bull. Amer. Meteor. Soc., doi: https://doi.org/10.1175/BAMS-D-19-0296.1. 
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Issue Hydroclimatic 
Phenomenon 

Aspect of 
Phenomenon 

Decision-relevant 
Metric 

Decision/Use 

Water 
Supply 

Streamflow Monthly flow Percentage of annual 
flow occurring in each 

month 

Water supply planning for 
restoration activities, and 

reservoir operations 
management such as managing 

reservoir use-re-fill cycle. 

Water 
Supply 

Streamflow Variability of 
Streamflow  

Standard deviation of 
monthly or annual 

flow volumes 

Planning for variability in water 
supply and for restoration 

activities. 

Water 
Supply 

Streamflow Peakflow Daily max flow Water quality management, e.g. 
planning water source rotations. 

Floods Rainfall Extreme Rainfall Intensity Duration 
Frequency or IDF 

curves, specifically, 1-
day, 3-day and up to 
7-day rainfall events, 
for 10, 25, 50 and 100 

year frequency 
intervals. 

To calculate applicable 
discharge rates for different 
stormwater management 

infrastructure. Design criteria 
used for drainage and flood 

protection are in terms of IDFs. 
In other words, designing 

standard engineering practices 
for infrastructure. 

Floods Rainfall Extreme Rainfall Change in temporal 
frequency of historic 
storms of particular 
return frequencies 

(10-100 yrs) 

To understand how design 
storm criteria for different 

infrastructure may change in the 
future (roads 10 yrs, houses 

100 yrs,), and for 
recurrent/nuisance flooding 

monitoring. 

Floods Rainfall Extreme Rainfall Frequency and 
duration of rainfall 

events greater than 3 
or 5 inches in 

summer season (July, 
August, September) 

For water supply preparedness, 
to understand cumulative water 

availability in key supply 
months. 

Floods Rainfall Extreme Rainfall Probable maximum 
precipitation. For 1-

day, 3-day and 
maybe up to 7-day 

events 

Large storage infrastructure 
design (like high dams). 
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Issue Hydroclimatic 
Phenomenon 

Aspect of 
Phenomenon 

Decision-relevant 
Metric 

Decision/Use 

Water 
Supply 

Rainfall Annual Rainfall Total annual rainfall 
volumes 

Water supply planning, and 
drought monitoring. 

Water 
Supply 

Rainfall Monthly Rainfall Monthly rainfall 
distributions 

Water supply planning, and 
drought monitoring. 

Water 
Supply 

Rainfall Variability in 
Rainfall 

Rainfall anomalies at 
Monthly time scales 

Water supply planning, and 
drought monitoring. 

Water 
Supply 

Rainfall Extreme Rainfall Rainfall Geometric 
curve (analogous to 
the SWE triangle). 

Including start of wet 
season, duration of 
wet season, peak 
volume and other 

related parameters 

Understanding how the annual 
water season would change in 

the future. 

Water 
Supply 

Droughts/Dry 
Spells 

Drought metrics Frequency of 1-, 2-, 
3- year duration 

droughts.  

Drought prediction and 
management, and planning 
future water infrastructure 

investments. 

Water 
Supply 

Droughts/Dry 
Spells 

Drought metrics Change in temporal 
frequency of historic 

multi-year droughts of 
a particular return 
period (e.g. 1 in 10 

year droughts) 

Drought prediction and 
management, and planning 
future water infrastructure 

investments. 

Water 
Supply 

Droughts/Dry 
Spells 

Low Rainfall Probability distribution 
of annual rainfall 
totals: particularly 

focusing on low end 
of that distribution 
and how often that 

occurs 

Water supply planning, drought 
monitoring, and planning future 

water infrastructure 
investments. 

Water 
Supply 

Droughts/Dry 
Spells 

Demand-Supply 
gap in 

Streamflow 

Streamflow curves 
showing the general 
shape and timing of 
runoff supply and 

water demand, and 

Water supply planning to 
calculate potential water 

shortages, and water 
conservation measures 

(reduction targets), drought 
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Issue Hydroclimatic 
Phenomenon 

Aspect of 
Phenomenon 

Decision-relevant 
Metric 

Decision/Use 

the differential (or 
gap) between the two 

monitoring, and planning future 
water infrastructure 

investments. 

 

4. Key scientific activities and results from Hyperion 
From the above long list of decision-relevant metrics, project Hyperion’s managers and 
scientists collectively developed case study science plans that identified a shorter list of 
scientific activities and metrics that will be a focus of the project (Table A1 in the Appendix).  

Out of this long list of decision-relevant metrics, project Hyperion’s stakeholders and scientists 
collectively decided to focus on the following metrics and scientific activities, as outlined in the 
case study science plans. These key scientific activities are as follows: Precipitation IDFs, Sea 
Breezes, and Tropical Cyclones. The rest of this section presents a narrative description of 
these three short-listed scientific activities. The key motivation, methods, results and limitations 
from each of the three scientific activities, are summarised below. 

4.1. Precipitation IDF curves 
Summary 

● This work analyzes how different climate models vary in their IDF estimates for the past 
and the future. It also proposes a framework that allows for examining IDF estimates for 
longer return periods, where the data sample size can be a limitation. 

● The study finds that there is considerable variability within and across models in both 
predicting historical IDFs as well as in IDF projections of the future.  

● A method is proposed that employs pooling of model data based upon historical 
performance of models. The models selected for pooling are bias corrected and then 
used for estimation of non-stationary IDF curves. The proposed method reduces 
estimation uncertainty due to enhanced sample size.  

4.1.1. Background 

IDF or Intensity Duration Frequency estimates are used for planning and management of 
extreme precipitation events. The curves specify the magnitude (i.e., intensity) of precipitation 
events across a range of durations and return periods (i.e., frequencies). These estimates 
provide information to support a wide variety of civil activities such as designing flood protection 
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structures and urban drainage systems. However, there are significant uncertainties and 
variability in climate models’ predictions of extreme precipitation. In the case of IDFs, the 
estimation uncertainty increases as one considers longer return periods since larger sample 
sizes are needed to estimate rarer events (e.g., assessing IDFs for 100-yr return period requires 
at least 100 years of data). Not many studies have critically examined the variability among 
different models in predictions of IDFs. In addition, the few studies that provide projections of 
IDFs for the future, either take a mean or median of IDF estimates from different models which 
may not address the issue of uncertainty due to small sample sizes and variability across 
models. Therefore, this research also proposes a new methodology that can help to reduce 
some of the issues associated with limited sample size for IDF estimations. The underlying 
hypothesis for this work is that, due to data (sample size) limitations for IDF estimations, and 
uncertainties, new and novel methods of combining model data of IDFs may be needed to 
better evaluate this metric. This research focuses on the following key research questions: 

1. How do climate models vary in their IDF estimates of the past and future? What 
are the differential capabilities of climate models in predicting historical IDFs? 

2. Do models show a statistically significant change in IDF estimates in future time 
periods as compared to historical? 

3. What framework allows for analyzing changes in IDF estimates despite sample 
size limitation, natural variability across space, and variability across models? 

IDF estimates were computed for historical (1956-2005) and RCP8.5 simulations (2049-2098) of 
the NA-CORDEX models. To provide station-wise results, model data was interpolated to 
station locations using nearest neighbor interpolation. The reference weather station data was 
obtained from NOAA Atlas 14, 24-hr precipitation data from GHCN archive. Every station that 
had 50 years data between 1950-2005 was included. The 12 NA-CORDEX models (with 
0.25x0.25deg resolution) that were evaluated are: CanESM2.CanRCM4 (A or 1), 
CanESM2.CRCM5-OUR (B or 2), CanESM2.CRCM5-UQAM (C or 3), GFDL-ESM2M.CRCM5-
OUR (D or 4), GFDL- ESM2M.RegCM4 (E or 5), GFDL-ESM2M.WRF (F or 6), HadGEM2-
ES.RegCM4 (G or 7), HadGEM2-ES.WRF (H or 8), MPI-ESM-LR.CRCM5-OUR (I or 9), MPI-
ESM-LR.CRCM5-UQAM (J or 10), MPI-ESM-LR.RegCM4 (K or 11), MPI-ESM-LR.WRF (L or 
12), and MPI-ESM-MR.CRCM5-UQAM (M or 13). Other datasets such as Variable Resolution 
CESM and LOCA downscaled data were also analyzed but are not presented here for brevity. 

The IDF estimations are based on univariate extreme value analysis that uses the method of 
maximized likelihood estimation. The generalized extreme value (GEV) distribution was then 
fitted to the data in a non-stationary framework. IDF estimates were computed from a sample of 
50 years, for 24-hour duration events at; 2, 5,10, 25, 50, and 100-year return periods. Historical 
and future IDF estimates from different models were computed for each weather station, and 
the resultant intra and inter-model variability in IDF results was examined. Since the 50-year 
sample size was limiting (especially for assessing longer return periods), models were then 
bias-corrected using quantile matching so that all models have the same historical distribution 
as the observations. The models (ones that accurately capture space and time variability of 
select precipitation metrics) were pooled together to develop a long time-series of data (i.e. if 5 
models with 20 years of data can be pooled, it can yield 100 years of data). 
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4.1.2. Key Results 

Figure 2 shows the results of a comparative skill evaluation of models in predicting historical 
IDFs for a 24 hour duration storm at one weather station. This analysis was done for over 50 
weather stations across the region. The results show that there is considerable variability across 
models in predicting both the historical and future IDFs. Also, the estimation uncertainty is large 
in models. For example, model 1 estimates historical rainfall intensity for 24 hour duration 
storms of different return periods between 2 and 22 inches whereas model 2 predicts the same 
at between 2 and 14 inches. The estimation uncertainty particularly increases with higher return 
periods. Apart from other factors this could be due to small sample size. Figure 2 also gives IDF 
projections for the weather station from the different models. The figure suggests there may be 
an increase in IDF estimates in the future, but this change (change between historical and 
projected IDF for each model) may not be statistically significant. Further, some models (e.g. 1,3 
and 7) do not show a clear increase in precipitation for all return periods, there is also a large 
variability between the projections in different models i.e. both intra and inter model variability in 
projected IDFs is high, and hence a statistically significant change signal is not seen. 

 
Figure 2: NA CORDEX models’ predictions precipitation intensity estimates for a 24-hour duration storm 
The first panel shows weather stations and their associated latitude longitude. Panels labelled 1-13 represent the 
different NA CORDEX models’ predictions of historical and future precipitation intensity estimates for a 24-hour 
duration storm. Red is the historical IDF estimate, and the yellow shaded area is the 95% confidence interval (CI) 
around it. Similarly, blue is the future IDF estimate and the green area is the 95% CI around it. 
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In order to overcome the limitation of a small sample size, a methodology for pooling different 
models’ data to create a large sample size was developed. This methodology required bias 
correction of data. Bias corrected and pooled results are presented in Figure 3. From the figure 
we can gather the pooling model data reduces some of the estimation uncertainty by increasing 
the precision of the results due to larger sample size (as compared to using individual models or 
taking the median results). This pooling enables the detection of a statistically significant change 
or IDF estimates is seen between historical and RCP 8.5, showing that when the models are 
combined together the changed signal is clearer. This approach overcomes the small sample 
size limitations, thereby providing a clearer picture of the change in IDF estimates that may be 
expected in the future. 

  
Figure 3: 24-hr IDF estimates in the bias-corrected historical and future simulations. 
The red curve and yellow shading indicate IDF estimates and corresponding 90% confidence interval in the bias-
corrected historical simulation. The blue curve and green shading indicate IDF estimates and corresponding 90% 
confidence interval in the bias-corrected RCP8.5 simulation. The reader should note that historical IDF estimates and 
their 90% confidence intervals are the same in all models. The red curve with orange shading varies between panels 
solely due to changes in the vertical scale. The ‘’median-all" panel shows the median of IDF estimates from all 
models, while the “median-pooled" shows the median of the IDF estimates from models that are used for pooling. 
“Pooled" shows the IDF estimates computed from pooling of better performing models. Models that are used for 
pooling are shown in red letters in the top left corner of the figures. The X-axis indicates return periods in years and  
Y-axis indicates intensity in inches/day. This figure shows that the pooling method enables the detection of a 
significant change between IDF estimates of the past and the future for return periods lesser than 10 years. 

Figure 4 presents results for all weather stations where only models with good skill score for the 
annual maximum precipitation (AMP) metric were pooled (a station-wise version of this figure is 
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provided in Appendix 1- Figure A1). The figure again showcases that a statistically significant 
change between historical and RCP 8.5 is seen when the models are pooled together to create 
a large sample of data. With this pooling method, most weather stations in the region show an 
increase in intensity of precipitation for the 24 hour duration storm for recurrence intervals less 
than 10 years. For longer return periods, the models still indicate an increase in precipitation, 
however this change is not significant in all the stations that were examined. 

 
Figure 4: Changes in 24-hr precipitation for 2, 5, 10, 25, 50 and 100 year return periods computed from pooled 
models. 
The differences that are significant at the 90% significance level are shown as solid squares and those not significant 
at 90% are shown as blank circles. The significance is computed using the z-statistic as defined in section 3.2.3 of 
Srivastava et al. 2019. Units are in inches/day. Significant stations shows the percentage of stations at which the 
differences are significant. Pooled models: (E), (I), (K) and (M). 

4.1.3. Discussion and Conclusions 

Considering widespread variability across models, using a multi-model estimate of IDF seems a 
better option than relying on any single model. The IDF estimates based upon bias-corrected 
and pooled model data offers a larger sample size that enables the detection of significant 
increases in future precipitation estimates at more stations than any other method. This method 
can be applicable to any region or spatial scale, even where models do not agree well with each 
other and are data limited.   
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Although this work improves on current capabilities for assessing IDF estimates across different 
models, it is to be noted that the pooling method increases precision but not accuracy of results. 
We note that even the “best” performing models differ quite substantially in their estimates. 
Hence, alternate methods for evaluating accuracy of model predictions may be needed. One 
such method that has been pursued by this research team, is examining model skill for other 
extreme precipitation indices.  This work has assessed the skill of simulations of observed 
precipitation indices (P-indices) in the historical runs of regional climate models in the NA-
CORDEX program. Some of the results from this work are presented in the Appendix (Figures 
A2-A5). Since the models that perform well in Susquehanna and Florida differ, more research is 
needed to better understand the precipitation related processes that are more dominant in 
different regions. Further research on the topic must also focus on understanding the causes for 
models performing good/ bad (resolution, dynamics, convection, parameterization). Continual 
refinement of the multi-model approach to estimate future precipitation changes/ IDF estimates 
is also needed.  

4.2. Sea Breeze  
Summary 

● This work examines the contribution of the Florida sea breeze to summertime rainfall 
variability over land, and analyzes how the CAM model represents sea breezes. 

● A sea breeze detection algorithm was developed, which is able to detect sea breeze 
reasonably well (the observed summertime sea breeze detection rate between 2009-
2018 was 84%). 

● Results show that on days with classic sea breezes, the probability of precipitation is 
higher than 75% in some regions, especially when sea breeze is detected along both 
coasts. In terms of model skill, the CAM-REF-VR28 model shows 5 times less frequent 
and weaker sea breeze occurrences as compared to the observed sea breezes. 

4.2.1. Background and Methods 

This research was inspired by the fact that most studies on large scale precipitation in Florida, 
show that 50% or more of the precipitation is coming from unorganized convection and not 
associated with mesoscale or larger systems. However, the relationship between sea breeze 
and summertime rainfall is not very well understood because tracking sea breezes can be 
difficult. Further, the skill of climate models (which typically have a coarser resolution of around 
25 km as compared to phenomena like sea breeze which can be at smaller scales), for 
predicting such local scale circulations is also not well studied. Water managers in the region 
are interested in better understanding the influence of such diurnal forcings on precipitation 
patterns during the rainy season, and how it might be changing. 

This study hence aims to provide a better understanding of the relationship between sea breeze 
and summertime rainfall through developing a sea breeze tracking algorithm and assessing the 
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probability of precipitation during sea breeze days. Further, it also examines the skill of a 
variable resolution climate model in detecting sea breezes. Understanding how well models are 
able to capture this critical local phenomenon can help point to areas for model improvement, so 
that they are able to better predict the complex precipitation related processes in the region. 
This research asks two questions:  

1. What is the contribution of the Florida sea breeze to summertime rainfall 
variability over land? 
a. Hypothesis: the presence of the Florida sea breeze circulation enhances convergence 

and convection and leads to an increase in daily precipitation compared to days 
without sea breeze. 

2. How well can models like the Community Atmosphere Model (CAM( represent 
local circulation such as the sea breeze? 
a. Hypothesis: the model’s horizontal grid spacing may be too coarse to represent the 

occurrence of FL sea breeze in the variables typically used to detect and characterize 
sea breeze observationally. 

As a first step, a sea breeze detection algorithm was developed and tested using observed data 
to see how well the algorithm is able to detect observed sea breezes. To do this observational 
analysis, weather data from 13 stations in the Florida Automated Weather Network (FAWN) 
from 2009-2018 (June July August - JJA) were analyzed, to detect the presence of a sea breeze 
based on objective criteria involving wind and temperature. FAWN data are station data with 15-
min resolution, while the detection algorithm is based on hourly averages. Sea breeze 
occurrence was detected based on comparing coastal weather stations with inland stations for 
key variables such as differences in temperature, dew point temperature, and wind speed and 
wind direction (T, Td, WS, WD). Based on this, the number of days of sea breeze occurrence 
was recorded, and the sea breezes were characterized by coastline (East, West, Both), time of 
day, and date of occurrence. Synoptic types were calculated based on average low-level 
atmospheric flow from the daily 12UTC Tampa radiosonde.  

Next, the relationship between sea breeze occurrence and precipitation was analyzed using 
daily precipitation on days with and without sea breezes, which were compared generally and 
also by synoptic type. The precipitation data are NCEP 4-km gauge-corrected from 2009-2018 
(hourly – accumulated to daily 12pm-3am). Probability of precipitation and percent of total 
precipitation was calculated. 

For the model skill evaluation, a variable resolution model - CAM-REF-VR28’s output from 
2005-14 was analyzed. Similar model variables (T, wind speed and direction at 3-hr, 28-km 
resolution) were examined to compare the sea breeze occurrence statistics between 
observations and model output.  Grid cells were selected near observational stations. Synoptic 
types were calculated using 6 grid-cell average of 850-hPa wind vector.  
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4.2.2. Key Results 

The sea breeze algorithm that was developed is able to detect sea breeze reasonably well, the 
observed summertime (June,July, August- JJA) sea breeze detection rate 2009-2018 was 84%. 
In other words, the algorithm was able to detect a sea breeze in either the west or the east 
coast 84% of the time. This also showed that these observed sea breezes are most likely to 
occur under low-level wind speeds (i.e. weak synoptic influence with wind speeds <5 m/s) with 
westerly or southerly winds.  

On days with classic sea breezes, the probability of precipitation is higher than 75% in some 
regions especially when sea breeze is detected along both coasts (Figure 5).  

 
Figure 5: Summertime daily probability of precipitation (PoP) for classic sea breeze occurrence 
Summertime (June-July-August) daily probability of precipitation (PoP) for classic sea breeze occurrence on the east 
coast (a; 22% of days), west coast (b; 31% of days), both coasts (c; 31% of days) and when no classic sea breeze 
was detected on either coast (d; 16% of days). 

Some regions experience >50% of daily summertime accumulated rainfall on sea breeze days, 
even though these days only represent ~31% of summertime days (Figure 6). This suggests 
that there is a significant amount of precipitation associated with sea breeze days in the 
summer, although these results cannot identify the additional precipitation falling due to sea 
breeze (as other local pop-up thunderstorms may also be contributing to this precipitation). 
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Figure 6: Percent of precipitation during summertime (JJA) days where a classic sea breeze is detected 
Percent of precipitation during summertime (JJA) days where a classic sea breeze is detected by at least one station 
on the east coast (a; 22% of days), west coast (b; 31% of days), both coasts simultaneously (c; 31% of days), and 
days where a classic sea breeze is not detected by any test station (d; 16% of days).  

In terms of model skill, the current analysis of model data shows model sea breezes for 8 years 
(2005-2012). Sea breeze occurs about 5 times less frequently in the model when the same 
detection criteria are used for observations (refer Table 2). When the detection thresholds were 
lowered, particularly for the difference in temperature between test and reference station, then 
more sea breezes were detected (refer row for Model-adj, in Table 2). This and other sensitivity 
analyses indicate that these results are somewhat sensitive to the wind speed criteria, and more 
sensitive to the temperature gradient criteria. Further, the model shows more frequent 
occurrences of easterly winds when compared to observations when applying the criteria for the 
6-pixel average. This model bias can be an important finding for improving model performance 
for this local phenomenon. 
 
Table 2: Average number of sea breezes detected per year over the 2005-2012 time period for observations 
(Obs) and for CAM-REF-VR28 (Model) output.   
Average number of sea breezes detected per year over the 2005-2012 time period for the FAWN observations (Obs) 
and for CAM-REF-VR28 (Model) output. The analysis was repeated with a lower temperature threshold for the model 
results (Model-adj), which increased the average number of detected days with sea breezes. 

 

4.2.3. Discussions and Conclusions  

Sea breeze related precipitation is an important contributor to the overall summertime 
precipitation, especially when there are west coast sea breezes or sea breezes on both coasts. 
More than 35% of rainfall across agricultural regions in Florida occurs on days where a sea 
breeze was detected along both coastlines (31% of days). However, no significant difference in 
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rainfall intensity was found when sea breezes occur. In terms of model skill, the CAM-REF-
VR28 model shows 5x less frequent and weaker sea breeze occurrences as compared to the 
observed sea breezes. The model also shows more equal partitioning of sea breezes between 
the east and west coasts, and appears to have larger frequency of easterly winds than seen in 
observations. The broader takeaway from this research is that, peninsular regions prone to sea 
and/or lake breezes can see an enhancement of convergence and uplift leading to greater 
probability of rainfall on days when sea breeze is occurring, although some climate models may 
not detect the occurrences of these sea breezes accurately. 

Inland stations that are used as “control stations” in this analysis, are near Lake Okeechobee so 
may have some lake breeze biases, although these have been accounted for to a certain 
extent, by eliminating the ones that are very close to the lake. The current work cannot say how 
much additional precipitation falls due to sea breeze, although it can say that probability of 
precipitation is significantly higher on days with sea breeze. Separating out sea breeze effects 
from other local thunderstorm outflows is difficult from an image processing standpoint. For the 
model outputs only two types of sea breezes with wind (wind speed, wind direction) and 
temperature shifts are detected. More work is needed to detect the sea breezes due to 
difference in humidity, although it is unclear whether and how this will change results. It has 
been suggested in WRF studies that sea breeze is expressed more strongly in model humidity 
than temperature or wind vector. Further analysis is also needed to determine the sensitivity of 
these results.  Additional sensitivities relating to the land masking criteria in the model will also 
be explored.  

4.3. Tropical Cyclones 
Summary 

● This study investigates the skill of variable resolution models in tracking the frequency 
and spatial distribution of landfalling Tropical Cyclones (TCs) along the Eastern US, as 
well as the mean and extreme precipitation associated with these storms. 

● The variable resolution CAM5 configuration was able to produce reasonable frequency 
and spatial distribution of landfalling TCs along Eastern U.S, representing a significant 
improvement from the conventional climate model. 

● Compared to observations, the variable resolution simulations underestimate the percent 
of extreme precipitation from tropical cyclones. Despite this low bias, it is a significant 
improvement over the conventional climate simulations (100 km spatial resolution). 

4.3.1. Background and Methods 

Coastal storms, such as tropical and extratropical cyclones (TCs and ETCs), are responsible for 
a substantial amount of disaster related losses in the U.S. every year due to a combination of 
rainfall, high-winds and storm surge. About 39% of the U.S. population live in counties directly 
on the coastline, where a significant amount of the nation’s critical energy infrastructure is also 
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located. A prime example of this is Florida, where tropical cyclones can lead to heavy amounts 
of precipitation over much of the state’s area. Credible simulation of these events can help 
better understand and prepare for future changes in precipitation associated with these events. 
However, conventional climate models often struggle to resolve tropical cyclones and therefore 
the rainfall associated with these storms. Evidence suggests that high-resolution climate models 
at grid spacings of approximately 25 km may be needed for appropriately simulating aspects of 
regional scale extreme precipitation events. However, there is no clarity on the exact skill of 
these models for specific phenomena. Since increasing model resolution can be costly in terms 
of resources and time, better understanding of the overall benefits of increased resolution can 
be useful for effective use of resources. This research asks the following research questions: 

1. How well do variable resolution models track the frequency and spatial 
distribution of the landfalling Tropical Cyclones (TCs) along the Eastern US?  

2. How do TCs relate to mean & extreme precipitation, and how well does a variable 
resolution model simulate mean and extreme precipitation associated with TCs? 

A tropical cyclone rainfall analysis tool is developed with TempestExtremes to extract 
precipitation associated with individual TCs, and quantify their contribution to average and 
extreme (Rx5day) precipitation in the Eastern U.S. Occurrence of storms and the precipitation 
associated with them is analyzed from a suite of CESM-CAM5 variable resolution simulations 
with high-resolution domains (25 km) over the North Atlantic and Eastern. These high-resolution 
simulations are compared to a conventional climate simulation (100 km), and to observations. 

4.3.2. Key Results 

The variable resolution CAM5 configuration was able to produce reasonable frequency and 
spatial distribution of landfalling TCs along Eastern U.S. This model simulated 12.5 TC/ yr as 
compared to the observed 13 TC/yr in the North Atlantic. This represents a significant 
improvement from the conventional climate model which was able to track only 2.6 TC/yr (Fig 
7).  The variable resolution simulations suggest that although these storms only contribute 1-2% 
to the average annual precipitation, their contribution to extreme precipitation is much larger, 
approaching 30% in some regions along the coast. When compared to observations, the 
variable resolution simulations slightly underestimate the percentage of extreme precipitation 
from TCs.  For example, observations suggest that Florida receives about 17-18% of its 
extreme precipitation from TCs, but CAM5 with variable resolution simulates 15%, which is an 
improvement over the standard resolution CAM5 (13%) (Fig 8). Despite this slight low bias it is a 
significant improvement over the conventional climate simulations (100 km spatial resolution). 



21 

Figure 7: Comparison of observed and CAM 5 simulalated landfalling TC tracks at different resolutions. 
Comparison of observed Eastern United States landfalling TC tracks to CAM5 simulated landfalling TC tracks at a 
conventional climate model resolution of 100 km and CAM5-VR with 25 km resolution. The colors of the lines 
represent the intensity of the storm as measured by the Saffir-Simpson scale. The CAM5-VR configuration performs 
well at simulated TC landfalls compared to the conventional climate model approach. 
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Figure 8: Rx5day, TC-related Rx5day, and % of Rx5day events due to TCs for observations, CAM5 variable 
resolution and CAM5 conventional climate model resolutions. 
Rx5day (annual maximum 5-day accumulated precipitation) [mm/yr] (left column), TC-related Rx5day [mm/yr] (middle 
column), and percentage of Rx5day events due to TCs (right column) for observations (top), CAM5 variable 
resolution (middle) and CAM5 conventional climate model resolutions. The CAM5 variable resolution configurations 
shows an improvement in capturing the TC extreme precipitation magnitude and percentage of events over Florida. 
Top two rows are observed precipitation from Climate Prediction Center (CPC) and from Tropical Rainfall Measuring 
Mission (TRMM) data.  

4.3.3. Discussions and Conclusions  

This research has developed a novel analysis tool for tracking tropical cyclones and quantifying 
the precipitation associated with them. In general, the high-resolution CESM model along with 
the domains used for Hyperion, offer a significant improvement in simulating tropical cyclone 



23 

frequency in the North Atlantic. This improvement also leads to a reasonable simulation of 
extreme precipitation due to tropical cyclones (albeit slightly reduced), particularly for the Florida 
region. Work in the near-future will focus on analyzing future climate simulations for these storm 
related precipitation metrics. Additional future work will focus on understanding changes in 
storm structures and how this impacts precipitation associated with the storms. 
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Appendix 1 

Table A1:  List of metrics and summary of scientific activities pursued by Hyperion project 
S No. Science Activity Lead Scientists Description 

1.  
Precipitation IDF 
curves: Model skill 
and future projections 

Abhishekh 
Srivastava and 
Richard Grotjahn 

This work analyzed annual maximum 
precipitation (AMP) in historical simulations of 
VR-CESM and NA-CORDEX models. Models 
have considerable biases with respect to the 
station based AMP. A new approach is adopted 
wherein models are selected based upon their 
historical performances. The historical and future 
(RCP8.5) simulation data of selected models are 
then bias-corrected and pooled  to estimate non-
stationary changes in the IDF estimates of 24-hr 
precipitation.  
 
Related papers: 
Srivastava et al., 2019  “Quantifying changes 
in 24-hr precipitation extremes by pooling 
NA-CORDEX models: Susquehanna 
watershed and Florida peninsula” (under 
review in Water Resources Research). 

2.  
Precipitation metrics 
(other than IDF): Skill 
evaluation 

Abhishekh 
Srivastava and 
Richard Grotjahn 

Precipitation indices (ETCCDI) namely annual 
mean P, SDII, CDD, CWD, Rx1day, Rx5day, 
R10mm, R20mm and Fr95T have been analyzed 
in the historical NA-CORDEX models. The two 
performance criteria (1) Taylor diagram and (2) 
interannual variability skill score (IVSS0 are used 
to estimate model performance against station-
based data. The results are summarized in the 
form of “heat map” (also called stop-light 
diagram or portrait diagram). The analysis 
indicates that models have moderate skills in 
simulating both the observed spatial and 
temporal patterns of ETCCDI indices.  

3.  
Sea Breeze: Model 
skill evaluation 

Dana Veron and 
Sara Rauscher 

This work examines the contribution of the 
Florida sea breeze to summertime rainfall 
variability over land, and analyzes how the CAM 
model represents sea breezes. 
A sea breeze detection algorithm was 
developed, which is able to detect sea breeze 
reasonably well (the observed summertime sea 
breeze detection rate between 2009-2018 was 
84%). 
Results show that, on days with classic sea 
breezes, the probability of precipitation is higher 
than 75% in some regions especially when sea 
breeze is detected along both coasts. In terms of 
model skill, the CAM-REF-VR28 model shows 
5x less frequent and weaker sea breeze 
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S No. Science Activity Lead Scientists Description 

occurrences as compared to the observed sea 
breezes. 
 
Related papers: 
A Characterization of Sea Breeze Enhanced 
Rainfall in South Florida, Moore et al. 2020, 
under review in JAMC. 
 
Moore, D. P., and D. E. Veron, 2020: Automated 
detection algorithm for sea breeze fronts using 
ground-based radar, Journal of Atmospheric and 
Oceanic Technology, to be submitted Jan 2020. 
 
Moore, D., and D. E. Veron, 2019: Automated 
Detection of Sea Breeze Circulations: A 
Climatology of Sea Breeze-Initiated Precipitation, 
American Meteorological Society’s 23rd 
Conference on Integrated Observing and 
Assimilation Systems for the Atmosphere, 
Oceans, and Land Surface (IOAS-AOLS), 99th 
Annual Meeting, Phoenix, AZ, USA. 
 
Moore, D.P., 2019. Detection and Analysis of 
Sea Breeze and Sea Breeze Enhanced Rainfall: 
A Study of the Florida and Delmarva Peninsulas 
(Master's thesis, University of Delaware). 

4.  
Extra Tropical 
Cyclones: Model skill 
and sensitivity to 
variable resolution 
domain 

Colin Zarzycki This project developed metrics and software 
packages in order to evaluate coastal storms in 
gridded climate data, and evaluated the 
performance of these metrics in reanalyses, 
which allows a direct comparison to 
observations. Metrics were iteratively improved 
and showed capability to automatically extract 
key hydrologic events. The study also evaluated 
the performance of a current class of Earth 
System Models (ESMs) at ~1deg resolution to 
reproduce ETCs over historical period. Through 
use of variable-resolution ESMs, the project 
evaluated the resolution sensitivity and value 
add associated with finer grid spacings and 
ETCs. 
 
Related papers: 
P. A. Ullrich and C. M. Zarzycki (2017), 
TempestExtremes: A framework for scale-
insensitive pointwise feature tracking on 
unstructured grids, Geosci. Model Dev., 10, 
1069-1090, doi:10.5194/gmd-10-1069-2017. 
(Github repository) 
 
C. M. Zarzycki (2018), Projecting changes in 
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S No. Science Activity Lead Scientists Description 

societally-impactful northeastern U.S. 
snowstorms. Geophys. Res. Lett., 45, 12067–
12075, doi:10.1029/2018GL079820. 

5.  
Tropical Cyclones: 
Model skill and 
sensitivity to variable 
resolution domain 

Kevin Reed These studies investigates the skill of climate 
models and variable resolution models in 
tracking the frequency and spatial distribution of 
landfalling Tropical Cyclones (TCs) along the 
Eastern US, as well as the mean and extreme 
precipitation associated with these storms. The 
work also explores the large-scale climate 
controls on TCs in the North Atlantic, as well as 
model skill in storm intensity. 
The variable resolution CAM5 configuration was 
able to produce reasonable frequency and 
spatial distribution of landfalling TCs along 
Eastern U.S, representing a significant 
improvement from the conventional climate 
model. 
When compared to observations the variable 
resolution simulations underestimate the 
percentage of extreme precipitation from tropical 
cyclones. Despite this low bias it is a significant 
improvement over the conventional climate 
simulations (100 km spatial resolution). 
 
Related Papers: 
Chavas, D. R., K. A. Reed and J. A. Knaff 
(2017), Physical understanding of the tropical 
cyclone wind-pressure relationship, Nature 
Communications, 8, 1360, doi: 10.1038/s41467-
017-01546-9. 
 
Reed, K. A., J. T. Bacmeister, J. J. A. Huff, X. 
Wu, S. C. Bates and N. A. Rosenbloom (2019), 
Exploring the impact of dust on North Atlantic 
hurricanes in a high-resolution climate model, 
Geophys. Res. Lett., 46, 1105–1112, doi: 
10.1029/2018gl080642. 
 
Stansfield, A. M., K. A. Reed, C. M. Zarzycki 
and P. A. Ullrich (2019), Assessing Tropical 
Cyclones' Contribution to Precipitation over the 
Eastern United States and Sensitivity to the 
Variable-Resolution Domain Extent, J. 
Hydrometeorol., submitted. 

6.  
Future projections 
from VR-CESM 

Colin Zarzycki and 
Kevin Reed 

This study applied CESM Large Ensemble 
model runs to evaluate the projected changes in 
snowfall and total precipitation associated with 
ETCs over the northeastern United States during 
a mid-century and end-of-century period. 
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S No. Science Activity Lead Scientists Description 

Related papers: 
C. M. Zarzycki (2018), Projecting changes in 
societally-impactful northeastern U.S. 
snowstorms. Geophys. Res. Lett., 45, 12067–
12075, doi:10.1029/2018GL079820. 
 
This study applied the TC-rainfall methodology 
to explore changes in TC extreme precipitation, 
intensity and size and their impacts for the 
Eastern United States under future climate 
warming scenarios. 
 
Stansfield, A. M., K. A. Reed and C. M. 
Zarzycki (2019), Changes in Precipitation from 
North Atlantic Tropical Cyclones under RCP 
Scenarios in the Variable-Resolution Community 
Atmosphere Model, Geophys. Res. Letts, to be 
submitted. 

7.  
Mesoscale 
Convective Systems 
(MCS) metrics 
modeling 

Simon Wang and 
Binod Pokharel 

Metrics were developed to track the MCS over 
the northeast US that covers the Susquehanna. 
The NARCCAP Data were also utilized. 
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Figure A1: 24-hr IDF estimates in the bias-corrected historical and future simulations for 74 weather stations. 
IDF estimates above are from pooling better performing models (models E,I,K,M in Section 3.1). The red curve and 
yellow shading indicate IDF estimates and corresponding 90% confidence interval in the bias-corrected historical 
simulation. The blue curve and green shading indicate IDF estimates and corresponding 90% confidence interval in 
the bias-corrected RCP8.5 simulation. The X-axis is return periods in years and the Y-axis is intensity in inches/day.  
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Figure A2: Model rankings for different NA-CORDEX models and for different precipitation metrics based 
upon Taylor diagram. 
The diagram compares the spatial pattern of the long term means of P-indices in terms of their standard deviation, root 
mean square error (RMSE) and spatial correlation wrt. observation. Color bar indicates ranking of models between 1 
and 13. The letters on the right vertical axis have the following meanings. C: spatial correlation between model and the 
observation, S: Standard deviation in model divided by the standard deviation in the observation, R: RMSE between 
model and the observation divided by the standard deviation in the observation. The numbers inside the boxes indicate 
their actual values. The figure shows that MPI set of models are among the best performers based upon Taylor diagram. 
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Figure A3: Ranking of NA-CORDEX models based upon IVSS, for different precipitation metrics. 
IVSS is a temporal variability skill score based upon the ratio of temporal standard deviation of the indices in model to 
the standard deviation of the indices in the observation at each station. Color bar indicates IVSS (score); the smaller 
the score the better is the model performance. The numbers on top indicate model ranking between 1 and 13 based 
upon IVSS. The figure shows that nearly half of the models have reasonably good (and similar) skills in simulating the 
temporal variability in the observation. Nearly all models have trouble in simulating CDD and CWD. 
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Figure A4: Overall rankings based on both Taylor diagram and IVSS for NA-CORDEX models, for various 
precipitation metrics 
The correlation between model ranking scores from Taylor diagram and IVSS is shown in the upper left corner. The 
correlation coefficient indicates the degree to which NACORDEX models performing well in spatial simulation of 
indices also perform well on temporal scale. The figure shows that most of the models have moderate skills in 
simulating the spatial and temporal patterns of the observed indices- models lie in the center of the scatter diagram. 
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Figure A5: Overall rankings based on both Taylor diagram and IVSS for NA-CORDEX models for annual 
maximum precipitation 
The correlation between model ranking scores from Taylor diagram and IVSS is shown in the upper left corner. The 
correlation coefficient indicates the degree to which models performing well in spatial simulation of indices also 
perform well on temporal scale. This figure shows that for the metric of Annual Maximum Precipitation, models that 
perform well in simulating the spatial pattern perform badly in capturing the temporal standard deviation of the annual 
maximum precipitation. This result was in contrast with results of the same analysis for Susquehanna and 
Sacramento/San Joaquin, where the models ranked in a more orderly  fashion, and there were models that 
performed well on both temporal and spatial ranking. In this case, the good-performing models were ones that had 
moderate skill in both temporal and spatial rankings ( K, I, M, and E). 
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