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Introduction 
This narrative case study report is a synthesis of key discussions and preliminary scientific 
results for the Susquehanna region, undertaken as part of the Hyperion project (2016-19). 
Project Hyperion (now continuing as the HyperFACETS project) is a basic science project that 
aims to advance climate modelling by evaluating regional climate datasets for decision-relevant 
metrics. While there has been an explosive growth in the number of regional climate datasets 
available to users, there is limited understanding of the credibility and suitability of these 
datasets for use in different management decisions. Hyperion aims to address this need by 
developing comprehensive assessment capabilities to evaluate the credibility of regional climate 
datasets, understand the processes that contribute to model biases, and improve the ability of 
models to predict management relevant outcomes.  

Since decision-relevance is a core motivation for the project, Hyperion is designed on the 
principles of co-production. The project brings together scientists from nine research institutions 
and managers from twelve water agencies in four watersheds: Sacramento/San Joaquin, 
Colorado Headwaters, South Florida, and Susquehanna. The project structure explicitly allows 
for both the groups to co-develop the science plan and research questions, in addition to co-
producing the science itself. The scientists include atmospheric and earth system scientists as 
well as hydrologists. The water managers, depending on the agency, have functions including 
planning, operating and managing water quality, water supply, stormwater management, flood 
control, and water infrastructure design.       

This narrative report provides an overview of the co-production process in Hyperion (Chapter 1), 
the regional hydro-climatic context and challenges (Chapter 2), broad climate information needs 
of water management agencies (Chapter 3), and short summaries of the key scientific activities 
undertaken for the region (Chapter 4). This information is based on the project’s co-production 
engagements and preliminary scientific results. Some of the preliminary results may be updated 
or refined as they go through the peer-review process. While this report is based on the 
perspectives of water management agencies that were part of Hyperion, we hope that 
the insights and methodologies that were developed are broadly applicable to other agencies in 
the region as well. 
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1. Co-production in Hyperion 
In Hyperion, as far as possible, the research questions, approaches and results are co-
produced through regular structured and unstructured engagements between scientists and 
managers (Figure 1). Structured engagement methods include workshops, remote and in-
person focus-group discussions, and quarterly project update calls. There are also continual 
less-structured, informal conversations over telephone calls and emails.  

 

 

 

 

 

 

 

 

 

 
Figure 1: Co-production process and timeline  
Summarizes key engagement activities along with important outcomes at each stage (depicted by the blue document 
icon). ‘Sci’ refers to Scientists, ‘WM’ refers to Water Manager and ‘HC ph.’ refers to Hydroclimatic Phenomena.  
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2. Regional hydro-climatic context & challenges 
The Susquehanna river basin (SRB) is spread over parts of New York, Pennsylvania, and 
Maryland. The river empties into the Chesapeake Bay and provides more than one-half of the 
freshwater flowing into it. The basin provides water resources for domestic & municipal uses, 
power production, agricultural & industrial activities, as well as for recreational & environmental 
uses. The basin also serves as a passage for several migratory fish species.   

SRB is one of the most flood-prone regions in the country; flooding (flash and riverine) and 
related stormwater management are key challenges for the region. In addition, some portions of 
the basin have also experienced significant droughts (the basin had 5 droughts in the past 3 
decades), and therefore maintaining a sustainable water supply is also an issue. Furthermore, 
because some of the biggest water users (i.e. power plants) are on the river, there exist water 
sustainability concerns that need to be addressed. Water quality, especially in the Chesapeake 
Bay, is of high importance for the health of the Bay. Nutrient export to the Bay and salt-water 
intrusion, and their impact on water quality, are also important challenges. Streamflow and 
temperature are important hydrologic metrics which in-turn depend on metrics such as 
magnitude of rainfall, runoff, etc. Baseflow and stream temperature responses to drought are 
also of great importance. 

Most of the planning studies in SRB such as state water plans, flood control planning, drought 
assessments, water supply & availability studies, and other hydrological monitoring and 
modeling studies, do not typically use climate projections and are based mainly on existing and 
historical conditions. However, this is beginning to change. One example is the case of water 
quality assessments, wherein the EPA mandates that climate change be considered in Total 
Maximum Daily Load (TMDL) analysis. Some of the system impact models relating to water 
quality analysis, take into account climate model data, as one of the input parameters. Climate 
data is also used in design and management of stormwater ponds and fish passages. 
Hydroelectric dams and water supply agencies are some of the biggest users of climate 
information. In addition, other local-level agencies have shown interest in using climate change 
projections (even if they are currently not using such information).  

Some key information gaps for the region are that there is a need to quantify uncertainty and for 
higher spatial resolution in data especially for planning at the local-level. Future condition flow 
duration curves and statistics (e.g. projected 7-day, 10-year low flow) can be important tools that 
are currently not available. Projections of future water availability and of changes in extreme 
event occurrences (such as droughts) are lacking. Accurately predicting the variability in 
intensity and ‘flashiness’ of rainfall is also a constraint. In existing hydrologic models used at the 
Bay program, the choice of Evapotranspiration (ET) methods has a large impact on simulated 
sediment load, but it’s not easy to know which formula for computing ET is the most appropriate. 
Land use responses to changing climate signals are also a key information gap. 
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3. Climate information needs for water management  

3.1. Overview 
From the previous section, and based on focus group discussions in the project, droughts, water 
supply, and flooding were identified as key climate-related issues in the Susquehanna river 
basin. In addition, water quality was also identified as an important issue. Therefore, several 
peak as well as low streamflow metrics emerged as decision relevant. Since a portion of the 
Susquehanna region is heavily influenced by snow, snowpack metrics are also of importance. In 
addition, several extreme high and low precipitation metrics were identified as important. The 
issue of stationarity in current planning was brought up many times and recognized as a 
constraint that the managers are dealing with. In this context, current planning does not always 
incorporate information on variability/standard deviation of different runoff/precipitation metrics.  

In terms of spatial scales of relevance, for several metrics, stakeholders suggested that basin 
scale spatial resolution may be sufficient. Currently several metrics are measured at one 
candidate location (rain gauge or well) per county. Depending on the type of decision, the 
temporal scale of planning with climate change information may range from 10 to 50 to even 
100 years. 

3.2. List of decision-relevant metrics and their importance 
In order for science to be actionable, resource managers need information on decision-relevant 
climatic metrics. Therefore, one of the first goals of Hyperion was to co-produce the decision-
relevant metrics for different management decisions in each of the case study regions. From the 
water managers’ perspective, such metrics quantitatively describe climatic phenomena that are 
directly related to practical management problems; changes in these quantities would 
necessitate shifts in water infrastructure planning and operations. From the scientists’ 
perspective, these metrics can be used to test model fidelity for decision-relevant phenomena 
and hence push model development and scientific inquiry in more use-inspired directions. Table 
1 represents the decision relevant metrics, along with their potential importance, that were 
developed through iterative engagements between Dec 2016 to Nov 2017. This table is referred 
from the published journal article titled “The making of a metric: Co-producing decision-relevant 
climate science” by Jagannathan, Jones and Ray.1 

 
1 Jagannathan, K., A. D. Jones, and I. Ray, The making of a metric: Co-producing decision-relevant climate science. Bull. Amer. 
Meteor. Soc., doi: https://doi.org/10.1175/BAMS-D-19-0296.1. 
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Table 1: Examples of decision-relevant metrics for each region. 
The table highlights management issues, hydroclimatic phenomena, aspect of phenomena and then each decision-
relevant metric. The last column also describes some of the potential decisions or uses for these metrics that were 
identified by the case study water managers. 
 

Issue Hydroclimatic 
Phenomenon 

Aspect of 
Phenomenon 

Decision-relevant 
Metric 

Decision/Use 

Water 
Supply 

{Quality} 

Streamflow Peak flow Flows that exceed 
250,000 cfs or 400,000 
cfs scour threshold for 
Conowingo Reservoir 

Water quality management, 
specifically sediment and 

nutrient management for lower 
Susquehanna River and 

Chesapeake Bay. 

Water 
Supply 

Streamflow Peak flow 10- year frequency 3-
year duration high 

flows for Oct-March  

Water quality management in 
terms of monitoring 

Chesapeake Bay water quality 
standards. 

Floods Streamflow Peak flow Probable Maximum 
Flood  

Dam safety and flood risk 
management considerations. 

Water 
Supply 

Streamflow Low flow 7-day,10-year low flow Water quality management in 
terms of wastewater 

assimilation standards for 
discharge permits, and water 
supply planning in terms of 

passby flows or conservation 
releases for water withdrawal 

permits. 

Water 
Supply 

and 
Droughts 

Streamflow Low flow Monthly 95th percent 
exceedance (P95), 
P90, P85, P80, and 

P75 flows 

Water supply planning for 
passby flows, conservation 

releases, and low flow 
augmentation associated with 

water use permits. Drought 
conditions monitoring and 

issuing drought watch, warning, 
and emergency declarations 

Water 
Supply 

Streamflow Mean flow Mean annual flow and 
harmonic mean flow 

Water supply planning for 
passby flows and conservation 
releases associated with water 

withdrawal permits. Water 
quality management for 

calculating design flows for 
effluent limitations based on 

water quality criteria. 
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Issue Hydroclimatic 
Phenomenon 

Aspect of 
Phenomenon 

Decision-relevant 
Metric 

Decision/Use 

Water 
Supply 

and 
Droughts 

Streamflow Low flow July through 
November monthly 

median and P95 flows.  

Water supply planning for water 
use and availability as well as 
consumptive use mitigation 

operations. 

Water 
Supply 

Streamflow Monthly 
Streamflow 

Percentage of annual 
streamflow occurring 

in each month 

Water supply planning 
considering use and availability 

including monthly variable 
demands and in-stream flow 

needs. 

Water 
Supply 

Streamflow Variability of 
Streamflow 

Standard deviation of 
monthly or annual 

flows 

Water supply planning 
considering use and availability 

including monthly variable 
demands and in-stream flow 

needs. 

Floods Rainfall Extreme 
Rainfall 

Intensity Duration 
Frequency (IDF) 

curves, (Generic 1-
day, 2-day, 3-day up to 
7-day duration, 2-year, 
5-year, 10-year up to 

100-year storms) 

Flood risk management, and 
stormwater management and 

design criteria, including 
roadway drainage. 

Water 
Supply 

and 
Droughts 

Rainfall Cumulative 
rainfall 

30-,60-,90-,120-day 
cumulative rainfall and 

departure from 
average  

Drought monitoring and 
declarations. 

Water 
Supply 

and 
Floods 

Rainfall Annual cycle 
of Rainfall 

Rainfall distribution, 
Focusing on shifts in 
wet and dry seasons 

Flood risk management and 
water supply planning. 

Water 
Supply 

and 
Floods 

Snowpack Annual cycle 
of snow 

accumulation 
and melt 

 

SWE triangle, 
Focusing on peak 
date, accumulation 

rate, % of snow 
accumulation in 

different months of 
snow season 

Water supply planning in terms 
of water use and availability, 

flood control reservoir 
operations, and calibration of 

hydrologic models. 
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Issue Hydroclimatic 
Phenomenon 

Aspect of 
Phenomenon 

Decision-relevant 
Metric 

Decision/Use 

Water 
Supply 

Snowpack Monthly 
snowpack 

Monthly water 
availability from snow 

Water supply planning in terms 
of water use and availability and 
calibration of hydrologic models. 

Floods Snowmelt Peak flow Frequency of rain-on-
snow events and 

magnitude of 
associated runoff and 

streamflow 

Flood control reservoir 
operations and water quality 

management, specifically 
sediment and nutrient 

management for Chesapeake 
Bay. 

Water 
Supply 

Rainfall Low 
precipitation 

Precipitation 
anomalies i.e.. Rolling 

90-day mean 
precipitation and its 

departures from 
normal. 

Drought monitoring and 
declarations 

Water 
Supply 

Evapotranspira
tion (ET) 

Monthly ET March - October 
monthly ET 

Consumptive use and water 
budget evaluations. 

 
4. Key scientific activities and results from Hyperion  
From the above long list of decision-relevant metrics, project Hyperion’s managers and 
scientists collectively developed case study science plans that identified a shorter list of 
scientific activities and metrics that will be a focus of the project (Table A1 in the Appendix). The 
rest of this section presents a narrative description of three of these short-listed scientific 
activities: precipitation Intensity Duration Frequency (IDF) curves, streamflow modeling and 
extra tropical cyclones. We summarize the key motivation, methods, results and limitations from 
each of the three scientific activities. 

4.1. Precipitation extremes and IDF curves 
Summary 

● This work analyzes how different climate models vary in their IDF estimates for the past 
and the future. It also proposes a framework that allows for examining IDF estimates for 
longer return periods, where the data sample size can be a limitation. 
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● The study finds that there is considerable variability within and across models in both 
predicting historical IDFs as well as in IDF projections of the future.  

● A method is proposed that employs pooling of model data based upon historical 
performances of models. The models selected for pooling are bias corrected and then 
used for estimation of non-stationary IDF curves. The proposed method reduces 
estimation uncertainty due to enhanced sample size.  

4.1.1. Background and Methods 

IDF or Intensity Duration Frequency estimates are used for planning and management of 
extreme precipitation events. The curves specify the magnitude (i.e., intensity) of precipitation 
events across a range of durations and return periods (i.e., frequencies). These estimates 
provide information to support a wide variety of civil activities such as designing flood protection 
structures and urban drainage systems. However, there are significant uncertainties and 
variability in climate models’ predictions of extreme precipitation. In the case of IDFs, the 
estimation uncertainty increases as one considers longer return periods since larger sample 
sizes are needed to estimate rarer events (e.g., assessing IDFs for 100-yr return period requires 
at least 100 years of data). Not many studies have critically examined the variability among 
different models in predictions of IDFs. In addition, the few studies that provide projections of 
IDFs for the future, either take a mean or median of IDF estimates from different models which 
may not address the issue of uncertainty due to small sample sizes and variability across 
models. Therefore, this research also proposes a new methodology that can help to reduce 
some of the issues associated with limited sample size for IDF estimations. The underlying 
hypothesis for this work is that due to data (sample size) limitations for IDF estimations, and 
uncertainties, new and novel methods of combining model data of IDFs may be needed to 
better evaluate this metric. This research focuses on the following key research questions: 

1. How do climate models vary in their IDF estimates of the past and future? What 
are the differential capabilities of climate models in predicting historical IDFs? 

2. Do models show a statistically significant change in IDF estimates in future time 
periods as compared to historical? 

3. What framework allows for analyzing changes in IDF estimates in the wake of 
sample size limitation, natural variability across space, and variability across 
models? 

IDF estimates were computed for historical (1956-2005) and RCP8.5 simulations (2049-2098) of 
the NA-CORDEX models. To provide station-wise results, model data was interpolated to 
station locations using nearest neighbor interpolation. The reference weather station data was 
obtained from NOAA Atlas 14, 24-hour precipitation data from GHCN archive. Every station that 
had 50 years data between 1950-2005 was included. The 12 NA-CORDEX models (with 
0.25x0.25deg resolution) that were evaluated are: CanESM2.CanRCM4 (A), 
CanESM2.CRCM5-OUR (B), CanESM2.CRCM5-UQAM (C), GFDL-ESM2M.CRCM5-OUR (D), 
GFDL-ESM2M.RegCM4 (E), GFDL-ESM2M.WRF (F), HadGEM2-ES.RegCM4 (G), HadGEM2-
ES.WRF (H), MPI-ESM-LR.CRCM5-OUR (I), MPI-ESM-LR.CRCM5-UQAM (J), MPI-ESM-
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LR.RegCM4 (K), and MPI-ESM-LR.WRF (L). Other datasets such as Variable Resolution CESM 
and LOCA downscaled data were also analyzed but are not presented here for brevity. 

The IDF estimations are based on univariate extreme value analysis that uses the method of 
maximized likelihood estimation. The generalized extreme value (GEV) distribution was then 
fitted to the data in a non-stationary framework. IDF estimates were computed from a sample 
size of 50 years, for 24-hour duration events at; 2, 5,10, 25, 50, and 100-year return periods. 
Historical and future IDF estimates from different models were computed for each of the 
weather stations, and the resultant intra and inter-model variability in IDF results was examined. 
Since the 50-year sample size was limiting (especially for assessing longer return periods), 
models were then bias-corrected using quantile matching so that all models have the same 
historical distribution as the observations. The models (ones that accurately capture space and 
time variability of select precipitation metrics) were pooled together to develop a long time-
series of data (i.e. if 5 models with 20 years of data can be pooled, it can yield 100 years of 
data). 

4.1.2. Key Results 

Figure 2 shows the results of a comparative skill evaluation of models in predicting historical 
IDFs for a 24-hour duration storm at one weather station. This analysis was done for over 50 
weather stations across the region (shown in the first panel of Figure 2). The results show that 
there is considerable variability across models in predicting both the historical and future IDFs. 
Also, the estimation uncertainty is large in models. For example, model A estimates historical 
rainfall intensity for 24-hour duration storms of different return periods between 2 and 7      
inches, whereas model L predicts the same between 2 and 3 inches. The estimation uncertainty 
particularly increases with higher return periods. Apart from other factors this could be due to a 
smaller sample size. Figure 2 also gives IDF projections for the weather station from different 
models. The figure suggests that there may be an increase in IDF estimates in the future, but 
this change (between historical and projected IDF for each model) may not be statistically 
significant. Further, there is also a large variability between the projections of IDFs in different 
models (i.e. both intra and inter model variability in projected IDFs is high), and hence a 
statistically significant change signal is not seen. 
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Figure 2: NA CORDEX models’ predictions precipitation intensity estimates for a 24-hour duration storm 
The first panel shows weather stations and their associated latitude longitude. Panels labelled A-L represent the 
different NA CORDEX models’ predictions of historical and future precipitation intensity estimates for a 24-hour 
duration storm. Red is the historical IDF estimate, and the yellow shaded area is the 95% confidence interval (CI) 
around it. Similarly, blue is the future IDF estimate and the green area is the 95% CI around it.  

In order to overcome the limitation of a small sample size, a methodology for pooling different 
models’ data to create a large sample size was developed. This methodology required bias 
correction of data. Bias corrected and pooled results are presented in Figure 3. From the figure 
we can gather that bias correction in this case reduces some of the inter-model variability. Also, 
pooling model data reduces some of the estimation uncertainty by increasing the precision of 
the results due to a larger sample size (as compared to using individual models or taking the 
median results). This pooling enables the detection of a statistically significant change or IDF 
estimates is seen between historical and RCP 8.5, showing that when the models are combined 
together the changed signal is clearer. This approach overcomes the small sample size 
limitations, thereby providing a clearer picture of the change in IDF estimates that may be 
expected in the future. 
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Figure 3: 24-hr IDF estimates in the bias-corrected historical and future simulations.  
The red curve and yellow shading indicate IDF estimates and corresponding 90% confidence interval in the bias-
corrected historical simulation. The blue curve and green shading indicate IDF estimates and corresponding 90% 
confidence interval in the bias-corrected RCP8.5 simulation. The reader should note that historical IDF estimates and 
their 90% confidence intervals are the same in all models. The red curve with orange shading varies between panels 
solely due to changes in the vertical scale. The ‘’median-all" panel shows the median of IDF estimates from all 
models, while the “median-pooled" shows the median of the IDF estimates from models that are used for pooling. 
“Pooled" shows the IDF estimates computed from pooling of better performing models. Models that are used for 
pooling are shown in red letters in the top left corner of the figures. The X-axis indicates return periods in years and 
the Y-axis indicates intensity in inches/day. 
 

Figure 4 presents results for all weather stations where only models with good skill score ((C), 
(F), (G), (H), (I), (J), (K) and (L)) for the annual maximum precipitation (AMP) metric were 
pooled. This figure again showcases that a statistically significant change between historical 
and RCP 8.5 is seen when the models are pooled together to create a large sample of data. 
With this pooling method, almost all-weather stations in the region show an increase in intensity 
of precipitation for the 24-hour duration storm for different recurrence intervals. 
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Figure 4: Change in 24-hr precipitation for 2, 5, 10, 25, 5 0& 100 year return periods from pooled models.  
The differences that are significant at the 90% significance level are shown as solid squares and those not significant 
at 90% are shown as blank circles. The significance is computed using the z-statistic as defined in section 3.2.3 of 
Srivastava et al. 2019. Units are in inches/day. Significant stations shows the percentage of stations at which the 
differences are significant. Pooled models: (C), (F), (G), (H), (I), (J), (K) and (L). 

4.1.3. Discussion and Conclusions 

Considering widespread variability across models, using a multi-model estimate of IDF seems to 
be a better option than relying on any single model. The IDF estimates based upon bias-
corrected and pooled model data offer a larger sample size that enables the detection of 
significant increases in future precipitation estimates at more stations than any other method. 
This method can be applicable to any region or spatial scale, even where models do not agree 
well with each other and are data limited.  

Although this work improves on current capabilities for assessing IDF estimates across different 
models, it is to be noted that the pooling method increases precision but not accuracy of results. 
Hence, alternate methods for evaluating accuracy of model predictions may be needed. One 
such method that has been pursued by this research team is examining model skill for other 
extreme precipitation indices. This work has assessed the skill of simulations of observed 
precipitation indices (P-indices) in the historical runs of regional climate models in the NA-
CORDEX program. Some of the results from this work are presented in the Appendix (Figures 
A5-A8). Further work on the topic must also focus on understanding the causes for models 
performing good/ bad (resolution, dynamics, convection, parameterization).  Continual 
refinement of the multi-model approach to estimate future precipitation changes/ IDF estimates 
is also needed.  
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4.2. Streamflow 
Summary: 

● This work examines the skill of streamflow simulations from a hydrological model, CLM-
PAWS, forced by (a) precipitation from a variable resolution climate model versus (b) 
precipitation from observed gridded reanalysis data. 

● Overall, streamflow simulations from CLM-PAWS (in terms of streamflow probability 
density function, median flow, and 33-percentile flow) matched well with observed USGS 
gauge data, and the variable resolution CESM model forced hydrologic model is as 
skillful as gridded climate reanalysis data forced hydrologic model.  

● However, both the simulations underestimated peak flows, suggesting that neither of the 
forcings were able to fully capture the extreme precipitation events, indicating potential 
biases in the hydrological model.  

4.2.1. Background and Methods 

Many water management decisions such as water supply or dam operations, are based on 
estimates of streamflow. Therefore, understanding how well different models and datasets are 
able to capture streamflow, is important especially in the face of climate change. For streamflow 
estimations, there are two types of models in play: climate models that provide precipitation 
data, and hydrological models that convert the precipitation into streamflow. There are biases 
and uncertainties within each of these models that can impact the streamflow estimations. 
Therefore, exploring the streamflow estimations from hydrologic models driven by different 
observation and model data can be a useful way to understand how errors or biases propagate 
(or do not propagate) from precipitation to streamflow. This can also help better assess the 
value and limitations of climate data driven hydrological models, and point to areas for 
improvement in the models. This analysis focuses on understanding how climate simulation 
errors propagate from precipitation to streamflow, and asks the question:  

1. What is the skill of streamflow simulations from a hydrologic model (CLM-PAWS) 
forced by (a) precipitation from a variable resolution climate model versus (b) 
precipitation from an observation-based gridded reanalysis dataset, as compared 
to historically observed streamflow data? 

In order to examine this, the Perkin skill score between observed (USGS stream gage) and 
simulated (CLM-PAWS, Process-based Adaptive Watershed Simulator coupled to the 
Community Land Model) streamflow was computed. Two simulated streamflows were used: the 
first was forced with NLDAS precipitation data (which is a reanalysis dataset based on 
observations) and the other simulation was forced with VR-CESM precipitation data (VR-CESM 
is a variable resolution climate model with a high resolution for the study region). The Perkin 
skill score examines the difference in the probability distribution function (PDF) of the two 
datasets. The Perkin skill score varies between 0-1 and is 1 for identical distributions and 0 for 
completely different distributions. A similar skill score was also employed for the precipitation 
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evaluation. The historical period for the USGS streamflow data was from 1984-2017, NLDAS 
forced streamflow simulations were for 2000-2017, and VR-CESM forced streamflow was from 
1984-2014. 

4.2.2. Key Results 

The Perkin skill score computed for three sub-basins in the Susquehanna River Basin were all 
close to 1, showing that the PDF, or shape of the distribution of streamflow simulations from 
CLM-PAWS (with both NLDAS and VR-CESM forcings), matched well with the observed USGS 
data. There was also not a lot of difference between the scores for CLM-PAWS-NLDAS and 
CLM-PAWS-VR-CESM showing that the skill of the model forced by the reanalysis and variable 
resolution model data are similar. This suggests that in this region, the variable resolution 
CESM model forced hydrologic model is as skillful as the gridded climate reanalysis data forced 
hydrologic model, in capturing the distribution function of streamflow. Refer to Table 2 and 
Figure 5 below. It is important to note that although the models were skilled in getting the 
probability density function of the streamflow, the figure also shows that both these simulations 
still underestimate peak flows, suggesting that neither of the forcings were able to fully capture 
the extreme precipitation events. Since the underestimation was observed in both the reanalysis 
and model-forced simulations, it is possible that this bias arose from the hydrological model. 
Therefore, the results further suggest that CLM-PAWS may have limitations in terms of 
expressing the streamflow impacts of extreme precipitation.  
 
Table 2: Perkin’s skill score (0-1) for streamflow 2000-2014 for the different sub-basins 
 

Sub-basin NLDAS VR-CESM log10(NLDAS) log10(VR-CESM) 

Susquehanna-sub1 0.96 0.95 0.77 0.78 

Susquehanna-sub2 0.93 0.92 0.83 0.85 
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Figure 5: Streamflow estimations from observed and two modeled simulations for all of the Susquehanna 
river basin and 2 sub-basins.  
CLM-PAWS demonstrated good performance for the streamflow simulation of this region using North American Land 
Data Assimilation System (NLDAS) forcing (2000-2017). On the other hand, streamflow peaks were underestimated 
by VR-CESM, as compared to NLDAS.  

For the most part, the models produce realistic precipitation distributions and decent streamflow 
predictions including the median flow and 33-percentile flow. However, despite a good skill 
score in distributions of streamflow, the models are still under-estimating extreme events. Both 
climate projections and the hydrologic model contributed uncertainties. But for water availability 
forecasts (which presumably are more concerned with PDF or median streamflow), these 
models can be trusted although more work is needed for using the model for extreme 
streamflow related decisions.  

4.2.3. Discussion and Conclusions 

Streamflow PDF predictions directly based on variable resolution CESM simulations will likely 
be sufficient for water availability assessment but may still under-estimate extreme events. 
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Further refining of models would be necessary to appropriately capture extremes. A key 
limitation of the Perkin skill score is that it only provides a measure for similarities in PDFs. 
Therefore, it is possible to get a good skill score even if variables      like extreme streamflow are 
not well represented. In this work, only one variable resolution model skill has been evaluated. 
Further work is needed to assess CLM-PAWS simulations for different models (such as 
CORDEX) as well as for future projections. 

4.3. Extratropical Cyclones 
Summary: 

● This work focuses on how well the CESM LENS model is able to simulate precipitation 
(both total precipitation and precipitation as snow) associated with wintertime 
extratropical cyclones (ETCs) in the northeastern US, and the minimum model resolution 
that is needed to capture such events.  

● The model was found to credibly capture the precipitation impact from ETCs although it 
produces a higher number of “low-end” storms. CESM LENS not only reproduced 
patterns of coastal ETCs, but also genesis locations which implies dynamic credibility. 

● The required minimum resolution for adequately simulating ETCs is coarser than TCs, 
which is consistent with previous work that demonstrates that the minimum resolution 
needed to simulate, and track cyclones is ~1deg.  

4.3.1. Background and Methods 

Coastal storms, such as tropical and extratropical cyclones (TCs and ETCs), are responsible for 
a substantial amount of disaster related losses in the U.S. every year. Thirty nine percent of the 
U.S. population lives in counties directly on the coastline; a significant amount of the nation’s 
critical energy infrastructure is located in these counties. Credible simulation of these events 
can help better understand and prepare for future changes in precipitation associated with these 
events. It is often understood that high resolution models may be needed for appropriately 
simulating regional scale extreme precipitation events, however there is no clarity on what is the 
minimum resolution needed to capture such events. Since increasing model resolution can be 
costly in terms of resources and time, better understanding the overall benefits of increased 
resolution can be useful for effective use of resources. The overall hypothesis is that the current 
class of GCMs and RCMs (1deg and finer) can do a sufficient job simulating storm-level metrics 
(i.e., individual cyclones) due to the spatial scales of these predominantly baroclinic storms. This 
research focuses on the following research questions: 

1. Can models credibly simulate precipitation associated with wintertime ETCs in the 
North Eastern US?  

2. What is the minimum resolution needed to capture such events?  
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ETCs can be tracked using Lagrangian techniques and following cyclone-specific markers such 
as sea level pressure minima (Figure 6). A software package named "TempestExtremes" was 
developed, which is a flexible open-source software for tracking storm features in climate data 
(Ullrich & Zarzycki, 2017; https://github.com/ClimateGlobalChange/tempestextremes).2 For the 
purposes of ETCs, the efficacy of this tracking algorithm was first evaluated. Following tracking, 
total precipitation and snowfall-only precipitation was integrated along a track to highlight hydro-
climatological and societal impacts. ETCs were then classified using NOAA Regional Snowfall 
Index (RSI) (Squires et al., BAMS, 2014).3 The RSI ranks snowstorm impacts on a scale from 1 
to 5. For example, RSI of 4 is a crippling storm, while 5 is ranked highest as extreme. An 
additional metric was also developed (Regional Precipitation Index, RPI) which evaluates the 
total water equivalent impact of discrete ETCs, analogous to RSI. 

 
Figure 6: An example of the ETC tracking mechanics.  
Sea level pressure is color contoured with the minima (center of storm) being tracked by the red dot across a 48 hour 
period. 

This particular research has focused on examining these winter storms for present day as well 
as two future time slices (“mid-century” and “end of century”). Model skill evaluation has been 
conducted with the Community Earth System Model, focusing on a large ensemble of 
simulations (35 members). The performance of the model for storm metrics has been tested 
against both gridded reanalysis products (such as JRA-55), and present-day stats have also 
been compared to NOAA’s hand-curated reference dataset for regional snowstorms. Ongoing 
evaluation of the variable-resolution CESM model, also permits evaluation of the minimum 
resolution needed for adequately simulating ETCs.  

4.3.2. Key Results 

The efficacy of the tracking algorithm was tested in terms of how well the algorithm "found" 
historical storms without manual intervention. It was concluded that the technique can 
reasonably match historical datasets from NOAA when using observational gridded products 
such as reanalysis in an automated manner (Figure 7). 

 
2 Ullrich, P.A. and C.M. Zarzycki (2017) "TempestExtremes v1.0: A framework for scale-insensitive pointwise feature 
tracking on unstructured grids" Geosci. Model. Dev. 10, pp. 1069-1090, doi: 10.5194/gmd-10-1069-2017. 
3 Squires, Michael F., et al. "The regional snowfall index." Bulletin of the American Meteorological Society 95.12 
(2014): 1835-1848. 
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Figure 7: Example of an ETC tracked in reanalysis compared to observations  
The panel on the left shows storm-total snowfall (color contours) from a tracked storm (track denoted by colored dots) 
in JRA-55. The panel on the right shows the same but hand-contoured by NOAA from station observations. The 
storm on the left was tracked without the need for manual intervention by using software developed in this project. 

In terms of model evaluation in projecting future storms, one climate model - the Community 
Earth System Model (CESM’s) Large ENSemble (LENS) with 35 ensemble members was 
evaluated.  It was found that the model can credibly capture the precipitation impact from these 
events, although it produces a higher number of “low-end” storms. It is unclear whether this is a 
model bias or resulting from observational uncertainty, however. It was also found that CESM 
LENS can not only reproduce the spatial patterns of coastal ETCs, but can also reproduce from 
common genesis locations, which implies dynamic credibility (Figure 8). 

Through analysis of variable-resolution CESM model, it was found that the required minimum 
resolution for adequately simulating ETCs is coarser than TCs, although this doesn’t consider 
other benefits of resolution such as topography. Overall, at the regional scale, the model seems 
to be able to capture coastal extratropical cyclones patterns credibly. This is consistent with 
previous work that demonstrates the minimum resolution needed to simulate and track cyclones 
is ~1deg. 

These results imply that the current generation of global ESMs (and therefore child regional 
models) can generally be trusted for large-scale ETC patterns. This is obviously dependent on 
other large-scale biases and may vary model-to-model but there is not a structural deficiency 
arising from coarse grid spacing and storm resolvability like there is for TCs. Models generally 
project a great deal of uncertainty in precipitation associated with these events. Even reanalysis 
data which are tightly constrained by observations vary significantly in their representation of 
total ETC-related precipitation. Therefore, the error bars on constraining even regional 
precipitation associated with storms remains large. Additionally, resolution improves mesoscale 
features embedded within ETCs, so hyper-local impacts (i.e., basin-scale and finer) will likely 
benefit from higher model resolution, even if the large-scale meteorological patterns do not 
change.  
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Figure 8: Trajectories of all major snowstorms (RSI>=3) in the present-day CESM ensemble.  
6-hourly storm centers are denoted by dots and color-shaded by intensity.  All ensemble members are included. 
Storm formation locations are compared to two common types of ETCs that impact the northeastern United States on 
right. Storm formation diagrams on right, courtesy of NOAA. 

4.3.3. Discussions and Conclusions 

With proper tools, the current class of earth system models should fundamentally capture ETCs 
at the regional scale. More nuanced hyperlocal precipitation impacts would benefit from higher 
resolution and/or downscaling. The resolution threshold is lesser for ETCs than TCs, mesoscale 
convection, etc. High-resolution models produce more accurate fine-scale structure although it 
is unclear how credible these scales are. However, global CESM produces slightly too many 
weak ETCs/storms but is reasonably well constrained observationally for more intense events. 
Precipitation remains tricky, and there is a lack of agreement even in reanalysis.  

The statistical sample size for rare storm-level events (i.e., storms that only occur once every 
25-50 years) is a limitation. Single realizations of future climate run drastically under-sample the 
potential for these storms. Therefore, further work focusing on more ensembles (either intra-
model or intermodal) would be beneficial. Further work can also target compound or sequential 
storms. These storm-level metrics can also be used to tag phenomena such as rain-on-snow 
events to ETC passage or other aspects of the atmospheric circulation, which can give a more 
holistic view of winter/spring hydrology in the northeastern United States. 
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Appendix 1 
 
Table A1:  List of metrics and summary of scientific activities pursued by Hyperion project scientists 

S No. Science Activity Lead 
Scientists 

Description 

1.  Precipitation IDF 
curves: Model skill and 
future projections 

Abhishekh 
Srivastava and 
Richard 
Grotjahn 

This work analyzed annual maximum precipitation 
(AMP) in historical simulations of VR-CESM and 
NA-CORDEX models. Models have considerable 
biases with respect to the station-based AMP. A 
new approach is adopted wherein models are 
selected based upon their historical performances. 
The historical and future (RCP8.5) simulation data 
of selected models are then bias-corrected and 
pooled to estimate non-stationary changes in the 
IDF estimates of 24-hr precipitation. The analysis 
suggests that almost all stations over the 
Susquehanna will observe significant increases in 
24-hr precipitation for 2-100 year return periods.  
 
Related Papers: 
● Srivastava, A., R. Grotjahn, and P.A. Ullrich 

(2019) "A unified approach to evaluating 
precipitation frequency estimates with 
uncertainty quantification: Application to 
Florida and California watersheds" J. 
Hydrology 578, pp. 124095, doi: 
10.1016/j.jhydrol.2019.124095. 

2.  Precipitation metrics 
(other than IDF): Skill 
evaluation 

Abhishekh 
Srivastava and 
Richard 
Grotjahn 

Precipitation indices (ETCCDI) namely annual 
mean P, SDII, CDD, CWD, Rx1day, Rx5day, 
R10mm, R20mm and Fr95T have been analyzed in 
the historical NA-CORDEX models. The two 
performance criteria (1) Taylor diagram and (2) 
interannual variability skill score (IVSS) are used to 
estimate model performance against station-based 
data. The results are summarized in the form of a  
“heat map” (also called stop-light diagram or portrait 
diagram). The analysis indicates that models have 
moderate skills in simulating both the observed 
spatial and temporal patterns of ETCCDI indices.  
 
Related Papers: 
● Srivastava et al., (2019) “Quantifying changes 

in 24-hr precipitation extremes by pooling 
NA-CORDEX models: Susquehanna 
watershed and Florida peninsula”. Water 
Resources Research. (Under review).  

3.  Streamflow Modeling: 
Skill evaluation 

Chaopeng 
Shen and Wen-
Ping Tsai 

Historical streamflow simulations of the hydrological 
model CLM-PAWS were developed using NLDAS 
and VR-CESM forcings. CLM-PAWS demonstrated 
good performance for the mid-low streamflow 
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S No. Science Activity Lead 
Scientists 

Description 

simulation. Further work on the hydrological model 
is underway to assess streamflow simulations for 
different datasets (such as CORDEX) as well as for 
future projections. 
 
Related Papers: 
● Shen, C. (2018) "A trans-disciplinary review 

of deep learning research and its relevance 
for water resources scientists" Water Resour. 
Res., 54 (11), pp. 8558-8593, doi: 
10.1029/2018WR022643. 

● Shen, C.P., E. Laloy, A. Elshorbagy, A. Albert, 
J. Bales, F.-J. Chang, S. Ganguly, K.-L. Hsu, D. 
Kifer, Z. Fang, K. Fang, D. Li, X. Li, and W.-P. 
Tsai (2018) "HESS Opinions: Incubating 
deep-learning-powered hydrologic science 
advances as a community", Hydrol. Earth 
Syst. Sci., 22, pp. 5639-5656, doi: 
10.5194/hess-22-5639-2018. 

● Tsai, W-P., X.Y. Ji, K. Fang, C.P. Shen (2019) 
"Revealing causal controls of storage-
streamflow relationships with a data-centric 
Bayesian framework combining machine 
learning and process-based modeling" 
Water Resour. Res. (Under Review) 

 
AGU 2019 abstract: 
https://agu.confex.com/agu/fm19/meetingapp.cgi/Pa
per/609941 

4.  Snow Water Equivalent 
(SWE) triangle: Model 
skill and future 
projections 

Alan Rhoades A multi-metric framework is developed to assess 
agreements and disagreements of the annual snow 
season in spatially continuous snow water 
equivalent (SWE) estimates derived from 
reanalyses, regional and variable-resolution climate 
model simulations and a statistical downscaling 
approach.  The more ephemeral snowpack of the 
northeast created issues for the direct use of the 
SWE triangle framework (developed for 
mountainous western U.S.), however, reanalysis 
and model SWE estimates more closely matched, 
particularly compared with California and Colorado. 
Under a high-emissions scenario, an ensemble of 
regional climate model simulations (i.e., NA-
CORDEX) projects a dramatic decline in peak SWE 
volume and snow season length (mainly due to a 
reduction in accumulation season length of ~30 
days) across the six Susquehanna River sub-
basins. Figures A1, A2, A3 and A4 in the Appendix 
present some of the results from this study. 

5.  Extra Tropical Colin Zarzycki This project developed metrics and software 
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S No. Science Activity Lead 
Scientists 

Description 

Cyclones(ETCs)  and 
Tropical cyclones: 
Model skill and 
sensitivity to variable 
resolution domain 

and Kevin 
Reed 

packages in order to evaluate coastal storms in 
gridded climate data, and evaluated the 
performance of these metrics in reanalyses, which 
allows a direct comparison to observations. Metrics 
were iteratively improved and showed capability to 
automatically extract key hydrologic events. The 
study also evaluated the performance of a current 
class of Earth System Models (ESMs) at ~1 deg 
resolution to reproduce ETCs over historical period. 
Through use of variable-resolution ESMs, the 
project evaluated the resolution sensitivity and 
value add associated with finer grid spacings and 
ETCs. 
 
Related Papers: 
● P. A. Ullrich and C. M. Zarzycki (2017), 

TempestExtremes: A framework for scale-
insensitive pointwise feature tracking on 
unstructured grids, Geosci. Model Dev., 10, 
1069-1090, doi:10.5194/gmd-10-1069-2017. 
(Github repository) 

● C. M. Zarzycki (2018), Projecting changes in 
societally-impactful northeastern U.S. 
snowstorms. Geophys. Res. Lett., 45, 12067–
12075, doi:10.1029/2018GL079820. 

6.  Variable resolution 
model: Future 
simulations 

Colin Zarzycki This study applied CESM Large Ensemble model 
runs to evaluate the projected changes in snowfall 
and total precipitation associated with ETCs over 
the northeastern United States during a mid-century 
and end-of-century period. 
 
Related Papers: 
● C. M. Zarzycki (2018), Projecting changes in 

societally-impactful northeastern U.S. 
snowstorms. Geophys. Res. Lett., 45, 12067–
12075, doi:10.1029/2018GL079820. 

7.  Mesoscale Convective 
Systems (MCS) 
metrics modeling 

Simon Wang 
and Binod 
Pokharel 

Metrics were developed to track the MCS over the 
northeast US that covers the Susquehanna River 
Basin. The NARCCAP Data were also utilized. 
 
Related Papers: 
● Pokharel, Binod, et al. "Climate of the weakly-

forced yet high-impact convective storms 
throughout the Ohio River Valley and Mid-
Atlantic United States." Climate Dynamics 52.9-
10 (2019): 5709-5721. 
https://link.springer.com/article/10.1007/s00382
-018-4472-0 

● Pokharel, Binod, et al. "Diagnosing the Atypical 
Extreme Precipitation Events Under Weakly 
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S No. Science Activity Lead 
Scientists 

Description 

Forced Synoptic Setting: The West Virginia 
Flood (June 2016) and Beyond." Climate 
Prediction S&T Digest (2018): 
8.https://repository.library.noaa.gov/view/noaa/1
7399/noaa_17399_DS1.pdf#page=16 

 

 
Figure A1: Snow water equivalent (SWE) triangle metrics 
Six snow water equivalent (SWE) triangle metrics visually represented and overlaid on the observationally 
constrained Livneh 2015 dataset historical average snowpack life cycle for the Susquehanna River Basin. 
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Figure A2: The six Susquehanna River sub-basins used to evaluate SWE datasets 

 
Figure A3: Z scores for the SWE triangle metrics across six Susquehanna River sub-basins 
The six SWE triangle metrics include snowpack accumulation rate (SAR), total water volume at peak accumulation 
(TWV), snowpack peak accumulation date (SPD), snowpack melt rate (SMR), the length of the accumulation season 
(AS), and the length of the melt season (MS). The Z score is computed by using the mean and standard deviation from 
Livneh, 2015 (L15). Red (blue) indicates positive (negative) Z score bias, and saturation indicates the magnitude of 
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bias. Similar to previous figures, text color is used to distinguish resolution in (b) and global climate model forcing data 
set in (c). SWE = snow water equivalent. 

 
Figure A4: Snow water equivalent triangle metrics projections 
 
SWE metrics for the eight North American Coordinated Regional Climate Downscaling Experiment simulations across 
the six Susquehanna River sub-basins and the northern, central, and southern aggregate regions. Figure shows 
future changes in these metrics for mid-century and the end of century with RCP 8.5. Color is used to distinguish 
1985–2005 (white), 2039–2059 (orange), and 2079–2099 (red). For Peak Water Volume the top x axis is used for 
individual regions and the bottom x axis is used for aggregate regions. MAF = million acre-feet. 
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Figure A 5: Model rankings for different NA-CORDEX models and for different precipitation metrics based 
upon Taylor diagram. 
The diagram compares the spatial pattern of the long term means of P-indices in terms of their standard deviation, root 
mean square error (RMSE) and spatial correlation wrt. observation. Color bar indicates ranking of models between 1 
and 13. The letters on the right vertical axis have the following meanings. C: spatial correlation between model and the 
observation, S: Standard deviation in model divided by the standard deviation in the observation, R: RMSE between 
model and the observation divided by the standard deviation in the observation. The numbers inside the boxes indicate 
their actual values. The figure shows that WRF set of models are among the best performers based upon Taylor 
diagram. 
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Figure A6: Ranking of NA-CORDEX models based upon IVSS, for different precipitation metrics.  
IVSS is a temporal variability skill score based upon the ratio of temporal standard deviation of the indices in model to 
the standard deviation of the indices in the observation at each station. Color bar indicates IVSS (score); the smaller 
the score the better is the model performance. The numbers on top indicate model ranking between 1 and 13 based 
upon IVSS. The figure shows that nearly half of the models have reasonably good (and similar) skills in simulating the 
temporal variability in the observation.  
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Figure A7: Overall rankings based on both Taylor diagram and IVSS for NA-CORDEX models, for various 
precipitation metrics  
The correlation between model ranking scores from Taylor diagram and IVSS is shown in the upper left corner. The 
correlation coefficient indicates the degree to which NACORDEX models performing well in spatial simulation of 
indices also perform well on temporal scale. The figure shows that most of the models have moderate skills in 
simulating the spatial and temporal patterns of the observed indices- models lie in the center of the scatter diagram. 
 
Overall, Figures A5, A6 and A7 suggest that for the precipitation metrics analyzed, the MPI set of models have the 
most consistent (moderate) performance. GFDL-ESM2M.CRCM5-OUR (D) performs worst among all models. 
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Figure A8: Overall rankings based on both Taylor diagram and IVSS for NA-CORDEX models for annual 
maximum precipitation  
The correlation between model ranking scores from Taylor diagram and IVSS is shown in the upper left corner. The 
correlation coefficient indicates the degree to which models performing well in spatial simulation of indices also 
perform well on temporal scale. This figure shows that for the metric of Annual Maximum Precipitation, Models I, M, 
C,K,F are the best performing ones. In the previous figure, AMP is referred to as Rx1day. 
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